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1 Abstract

Pt js a new language for low-level programming, desijto be a self-
hosting alternative to C. The novelty is it sugpoautomated memory management
without excluding manual memory management, andhowit hindering key features
associated with low-level programming, such as pamters, inline assembly code, and
precise control over execution. This paper presé@itt as a language, then it presents
several areas of research related to Pit.

The first area of research examines how Pit's aggdrdo memory allocation can
be used to significantly increase the securityoaf-level programs. Automatic memory
allocation is a useful tool of abstraction in masityiations. Since Pit provides this tool
without hindering low-level programming, it allovesitomated memory management to
be used in programs where it previously could rotiged, such as kernels. Specifically,
this tool of abstraction can assist the programsiggrificantly in writing low-level code
with fewer security problems caused by buffer aweror integer overflow bugs by
reducing the number of opportunities for such bagareas of code that do not need the
precision of manual memory allocation. Existindusions, such as Cycloffd add
various ways of checking bounds, but have two mdisadvantages: they require extra
work from the programmer, and they detect but dofikanemory allocation bugs. Pit's
approach simplifies what the programmer writes, imgikode more understandable.

The second area of research examines how Pit'©agiprto memory allocation
can be used to make low-level user-land programe rportable. Using more flexible
data types can loosen the bindings between progeardsthe system libraries at the
binary interface level, and define an API to systdraries that does not require object
files to be recompiled because of minor impleméoatietails when moving from one
operating system to another.

In the third area of research Pit is a case studtyshowing how to use Z
notatiod®“*® to formally specify semantics of a language. Fairspecifications and
supporting tools are effective at improving the ldyaand correctness of a software
system. A language is usually simple once undedstdmit communicating this
understanding to another person can be difficdth@ps because a new language often
represents a new paradigm. This communication adigolarly important when
developing a new language; the compiler and othas tare still under development, so
learning by doing isn’'t always possible, and yettorectly implement the compiler, a
solid understanding of the language is necessanys work is previously summarized in
[16].

2 Introduction

General-purpose programming languages, referringanguages designed for
writing wide ranges of applications such as C, ,Parid their relatives, may be
characterized by their style of memory managemedtl@vel of abstraction. As a general
trend, less abstract languages require the progesnmtm explicitly code memory
management logic and statements express CPU itistrsianore directly with greater
detail, while more abstract languages require &fsntion to memory management and
represent the intent of the program more directih wess detail. There are, of course,
many points of view on classifying languages, but this discussion, the interesting



trade-offs between general-purpose languages arsuahaor automatic memory
management, representing CPU instructions dirextlthe intent of the algorithms, and
representing more detail or less detail. For examPlrepresents the CPU'’s instructions
almost directly and provides no automated memongagament and requires more detail
in the code, however Perl manages memory entitglynaatically and usually represents
complex algorithms in less code. The cost to usiad is, of course, efficiency; in many
cases, Perl code is so slow it cannot meet thésusguirements. This pattern of trade-
offs frequently applies to comparisons betweenvel&vel and a high-level language.
This brief discussion may seem to imply a trade-o#tween automated memory
management and expression of fine-grained det@aiWgekier even if this connection holds
(and it may not) it does not exclude the possipiit creating a language that can express
both sides of the trade-offs in adjacent statemerithis duality is precisely what Pit
implemented.

Unfortunately, most software does not divide astlje@s most languages into
“low-level” and “high-level” where, for example,Welevel applications cannot afford the
cost incurred by high-level languages and highdleyplications cannot afford the cost
of extra effort in development time incurred by kevel languages. Most nontrivial
software has some code that does not need to exetfitiently and therefore would
benefit from a high-level language and some codenthust execute quickly or for other
reasons cannot afford the costs of a high-levejuage. Graphical programs are an easy
example of this; code that deals with individuadgdé and polygons for rendering images
and animations benefits significantly from optimigi at the level of individual CPU
instructions, while code that directs larger useterface widgets such as window
placement and buttons benefits far more from gredistraction.

It's possible to bridge this gap by using two laages to write a program, but this
approach has disadvantages. One problem is itfwdif for a module written in one
language to access data stored in memory by a maouditten in a different language
because most languages store data in memory qtfeéeedtly from each other. Perhaps
more importantly, using two languages to implemtbret software creates an artificial
boundary in the logic based on the capabilitietheftwo languages rather than based on
a natural separation of concern that's convenienttifie program’s design. A better
solution is to use a language that allows both @ggres and allows fine-grained control
over when each approach is applied. Pit uses \ar@dclarations to determine which
approach to use, which allows convenient yet pescositrol.

Pt is a compiled language derived primarily from Chil#/ it is designed to
be familiar to C programmers, the languages afferéifit enough in coding style that it
will probably always be a manual task to transketveen C code and Pit code in a way
that produces reasonably understandable code. ndbelty is that it simultaneously
supports the variable types found in C, calledrfyitive variables” and another class of
variables called “auto variables”. Auto variable® a@eclared syntactically using the
keyword “auto” in place of the type specificatiohuto variables are similar in many
respects to variables implemented by Perl; in tbgard, Pit is secondarily derived from
Perl. They are dynamically typed and manage meraatgmatically. The programmer
can choose to write the entire program using ouatg &ariables, only primitive variables,
or a combination of both. This allows the prograenrto choose to use automated or
manual memory management with every variable datitar. Thus, the programmer can



write some code that has all the characteristidS obde by avoiding auto variables, and
in the same function write more code that has el benefits of automated memory
management and dynamically typed variables by using variables.

Pit (named simply for Devpit.org) began as a clamsr project to implement a C
library for implementing dynamically-typed variablen C, which eventually developed
into Pit’'s concept of auto variables. Its APl usesingle struct pointer type for variables
which could store any type of value. The strucswepaque to the programmer, but
indicated whether it contained an integer, strimagh, etc. We analogized this variable
type to a Perl scalar variable. The API providedctions for the programmer to call for
each operation, such as assign, add, referencefedmnce, etc. Much like with Perl
scalars, each variable carried a reference coumtech, for example, incremented when
storing the variable in a larger structure. Thegpammer had the responsibility of
calling a function which would decrement this refece counter or free the variable
(recursively for multilevel data structures) everiace execution could exit the scope
containing the variable. This wasn’t bad as fac@splex data structure manipulation in
C goes, but it was far too clumsy for managing $engirings; nobody writing “real”
software would want to use this for simple thing8e finally redesigned this concept as
a new language. This has several advantages. iMpsttantly, it simplifies the concept
of auto variables enough that they are easier ¢othesn primitive variables, which are
still as easy to use as C’s variables. now the demputomatically inserts the calls to
decrement the reference count or free these vasgalthis tips the balance, making it
easier to use than manual allocation. Further,caidd now add several important
features missing from other low-level languageshsas exceptions and namespaces.
Also, the programmer can write operations on the mariable type with symbolic
operators in the same way as traditional varialoher than as function calls. In adding
these features, we kept the language within cansdréhat make suitable for the lowest-
level programs traditionally written in C, espelyidternels. To be sure, other languages
have these features, but none of them fit withaséhconstraints. During this work, we
studied ways that these improvements could be d@sedetter security, portability,
general maintainability, etc in low-level programs.

The compiler implements auto variables by insertiiugction calls to a
supporting library. Each operation translates afonction call, and it inserts additional
calls for incrementing and decrementing refereramants for garbage collection. It also
transparently inserts calls to this library for eerting from a primitive variable type to
an auto variable or vice versa, making it easysgigm a value from a primitive variable
to an auto variable and vice versa. Pit is seltihgsmeaning that it can express its own
compiler tools and supporting libraries with noltoaritten in other languages (although
this work is in progress). To accomplish this, theporting language library uses
primitive variables to construct the data strucdutbat store information for auto
variables.

Pit is designed to be suitable for (but not limiteyllow-level programming, such
as for operating system kernels, device driverstesy libraries, etc. This is perhaps the
class of software that is most starved for improeets in languages because most
implementations of recent languages require aalimoachine, prevent manual memory
management, and don’t have a way to access assesolle Pit can interact with C code
reasonably easily, which makes transitioning cgrentting with an existing project easier.



All C variables map directly to primitive variablés Pit, and the calling convention for
functions is close enough that a simple wrappectfan can work around the differences.

3 Examples of Pit syntax and translation to assembly

If auto variables could only store simple valueschs as integers, floats, and
references, they would obviously not be particylarseful. Their power becomes
apparent when they are compounded to create a emngata structure. Creating a
complex data structure using auto variables isalltivio do so, simply assign an array or
hash to an element of an array or hash, as follows.

1. ..

2. private auto $root; // Declare $root as a local v ariable

3.  S$root = array{}; // Assign an empty array to i t

4. $root(0) = hash{}; // Assign an empty hash to th e zeroth element
5. $root(0)("key0") = "array element 0, hash element k ey0";

6. $root(0)("keyl") = "array element O, hash element k eyl"™;

7. $root(1) = hash{};

8.  %$root(1)("key0") = "array element 1, hash element k ey0";

9.  $root(1)("keyl") = "array element 1, hash element k eyl";

10. ..

Notice how concise this code is because there isgsal to explicitly tell the
compiler how much memory to allocate for the aromyhash tables, when to free the
memory, or what the type of each value is. On #nee create an array and assign it to
$root, which dynamically assumes the array typde memory for the array is initially
allocated with a size of zero, and later it is aged as necessary. On lines 3 and 6, we
create hashes and assign them to elements of tag &root. Since the array was
previously too small to hold the elements, it isoaatically extended to a length of one,
and then to a length of two. Similarly, the eletisan the hashes need not exist before a
value is assigned; they are created automaticallgegessary. For comparison, here is
similar logic using only primitive variables.

1. ..

2. private array(struct("key0" array(char, 64), "keyl1" array(char, 64)), 2) $root;
3. $root(0)("key0") = "array element O, hash element k ey0";

4.  $root(0)("keyl") = "array element O, hash element k eyl";

5.  $root(1)("key0") = "array element 1, hash element k ey0";

6. $root(1)("keyl") = "array element 1, hash element k eyl"™;

7. .

Notice that unless we invest a lot of time and codenanually allocating the
memory with a dynamic size, we lose the abilityeidtend the array dynamically. Also,
the structs are not extensible at all, and theee smveral opportunities for a buffer
overrun vulnerability if the input strings come rinca distrusted source. These are the
same problems that all C code must deal with. Hewehe striking similarity between
the two examples shows two things: first, thatadiog between the two approaches is
easy for the programmer; second, if the progranuses the above implementation, an
optimizer will be able to eliminate much of thefii@ency by converting patterns found
in the first example into patterns shown in theoselcexample when possible.

On the topic of efficiency, the array extensionas as time-consuming as it looks.
Behind the scenes, the amount of memory reservetthdoarray starts at enough for four
elements and is doubled every time it runs oufpats. This reduces the amount of time



spent copying the array to a new location in memhile this is logically irrelevant to
the program’s execution, it reduces the amortizede tcomplexity of insertion from
O(™) to O(n), where n is the number of times one efenie added to the array.
Additionally, in many cases an optimizer could netor guess how many elements are
needed and pre-allocate the necessary amount obrgenin this case, it would not be
hard for an optimizer to transform the entire exbmpto primitive variables by using an
array of structs. While beyond the scope of ourresu work, an optimizer will
eventually be an important tool in mitigating thestof using auto variables instead of

primitive variables.

Above, we mentioned that auto variables are implgatk by translating every
operation into a function call to a supporting laage library. More precisely, for each
auto variable, the compiler allocates a pointerreltiee variable’s value would otherwise
be stored; then each operation on it is translatexa function call so that a run-time
library can manage its memory, type, value, refatpatc appropriately. For example, if
an auto variable is declared in a function, the miten allocates a pointer in the stack
frame and a function call is inserted to allocatgiab of memory on the heap with the
initial value of undef (undef is described lateFurther operations on the variable result
in the compiler inserting more function calls. tAé end of the function, another function
call is inserted to decrement each auto varialkf'€ount or free it if appropriate. This
way, it is valid to store a reference to the awoable outside the function, since the glob
need not necessarily be freed immediately wherfuhetion returns. Here is the exact
translation for part of the example above intonmiediate code for a 64-bit machine:

I/l "$root" above is translated into "%base - 64b" h
/I allocated in the stack frame. After each group
/I stack is back to its initial state.

/I Translation of: private auto $root;
stack_alloc 64b; /I Subtract 8
/I the stack p
call $lang.auto.new.undef; /I Constructs
/I value undef
10. store <ptr> [ %base - 64b ], <ptr>; // Pops the po
11. /I and stores

©CoNOOR~WNE

13. /I Translation of: $root = array{};
14. stack_alloc 64b;

15. call $lang.auto.new.array; /I Constructs
16. // value of an

17. store <ptr>, <ptr> [ %base - 64b ]; // Pushes the
18. call $lang.auto.refcount_inc; /I Inc ref-cou
19. /I operator ca

20. /I ref-count o

21. call $lang.auto.binop.assign; /I Perform the
22. Il result (a't

23. Il return valu

24, /l'in the seco

25. stack_free 64b; /I Discard poi

26. call $lang.auto.refcount_dec; I/l Free the te
27. stack_free 64b; /I Discard poi

ere, which was already
of statements, the

bytes (64 bits) from
ointer

a new auto with the
and ref-count of 1
inter to the new auto
it at %base - 64b

a new auto with the
empty array

location of $root

nt because a binary

Il decrements the

f both inputs
assignment, store the
emp auto holding the
e of the assignment)
nd parameter’s position
nter to $root

mp auto

nter to the temp auto

Although the translation looks somewhat obfuscaieds no more so than the
assembly output from a conventional C compiler, duslis easy output for a compiler to

generate.

Notice that since a glob may be pointed to in rpidtplaces if references to it are
created, and therefore it cannot be reallocateld avlarger size (because this may require



relocating the glob). This means that the glolaikig element must store a pointer to the
value rather than the actual value, since the valugt be reallocated if it changes in size.
This extra layer of indirection allows, for examp#tring buffers that are stored in auto
variables to be extended automatically as necesatrgr than allowing a buffer overrun.
It also allows for certain improvements to effiagrthat we describe later.

4 Comparing Pit to other languages

Table 1. Compare major features of Pit, C, and Pér Well-supported features are
marked Yes, missing features are marked No, featusethat are so clumsy they are
seldom used are marked Clumsy. Perl's design engly obviates separate module
interfaces, so this is marked Not Applicable. Futter explanation for each row is in
the section referenced in the last column.

Feature Pit C Perl See section

Basic features

Manual memory allocation Y YN 4.1
Automatic memory allocationand G&Y N Y 4.1
Automatic module interfaces Y NNA 42
Namespaces Y NY 4.3
Preprocessor N YN 4.3
Language constructs

Homogeneous arrays Y YC 4.4
Heterogeneous arrays Y N 4.4
Structs Y Y N 4.5
Hashes Y NY 45
In-line assembly Y YN 4.6
Exceptions Y C C 4.7
High-level features

Abstract data types Y NY 438
Automated compilation Y NY 43
Native vector math Y NN 4.9
Eval N N Y 410

The first step to grasp how a new language fits eeryday programming is to
gain an intuitive understanding of how design patiefor programs written in the
language differ from those written in other langesgespecially the languages that are
most similar and influential to its design. A gooelxt step is to examine how programs
will be simpler or more complex because of the bdpi@s and limitations of the
language. This helps present the language in thiexbof practical use.

Comparing Pit to C and Perl is useful because $itlasigned to make C's
capabilities and Perl's capabilities easy to usgettoer. This will highlight Pit's
additional capabilities, acknowledge its limitatsorand provide insight into what Pit



code looks like and ways it may reduce the effequired to write code. Table 1 shows
an overview of which common features are suppdrdit, as compared with C and Perl.
The following sections describe each feature inetatail.

4.1 Manual and automatic memory allocation

This feature is, of course, the focus of this papePit, the programmer chooses
which variables are allocated automatically. If gfregrammer declares a variable to be
the auto type, the memory for it and anything stareit is allocated automatically, and
reference-counting garbage collection is performatmatically, similarly to Perl. If the
programmer declares a variable to be a primitipe fyie must manually allocate and free
memory the same way he would in C. The languagiessgned to generate code that is
predictable and consistent in terms of CPU usagenamory usage; this is the primary
reason it uses reference-counting garbage colleatistead of mark-and-sweep garbage
collection.

4.2 Automatic module interfaces

In C, the programmer must meticulously create aldeéle for every module.
Typically, almost all the information in the headéde is duplicated in the module’s
source file. All of the duplicate information coulte generated automatically, and
therefore almost all of the time programmers spemaintaining header files for C
modules is wasted.

Perl has an unusual approach. When a module isriathat is literally executed.
This is because, roughly speaking, Perl code ispdenh at run-time, and declaration
statements are “executed”. In any case, the nettef§ that it supports modules in a
conventional sense, but does not require manuafame specifications.

Pit uses “interface files”; when a module is coragjlthe compiler generates both
the object file containing machine code and arriate file for the module. The contents
of the interface file fulfill the same role as tbentents of most C header files; it contains
only the prototypes for functions and shared vadembin contrast to C, however, the
compiler generates them automatically. When digtnilg a module, the interface file and
object file may be distributed without the sounbe. f

4.3 Namespaces and automated compilation

C simply does not support namespaces, although aiost successors do. Perl
supports namespaces quite well in the form of whatlls “packages”. Pit supports
namespaces also, including support for declaringydpe” symbols that are only visible
inside the namespace and “public” symbols thatvasile everywhere. References to
public symbols must include the prefix of the nashé¢heir namespace except when they
are referred to within their own namespace. Pitlicitfy declares a namespace for each
module with the name of the file containing it;sthiids automated compilation, described
below. Namespaces may be nested. A file systemarciey may represent nested
namespaces surrounding individual modules, and aulmomay contain multiple
namespaces within the namespace defined by itafite.

When compiling a C program, the programmer mustedmw describe each
command to execute. The compiler must be invokeceéezh module of the program.
Then the modules must be linked with the necessbrgries to produce the final



executable file. Little of this process is autondate standardized. While tools such as
“make” ease this process, it is still a complexcess that the programmer must design
carefully. Most other languages have a better syste

When compiling a Perl program, compilation starigiwhe main module. When
a module requires another module, it contains thee™ statement, which tells the
compiler the file name of the required module. Twnpiler then takes a detour to
compile that module before continuing. This procagsinates header files and makes it
easier to move the program between systems, diecprocess of finding a dependency
is contained in the compiler rather than, for exemp a Makefile included with the
program’s source code.

Pit follows an approach similar to Perl. Because tompiler automatically
declares a namespace for each module, and eaclolsiggrefixed with the name of its
namespace, the compiler can find the source fé¢ tontains each symbol. To start
compiling, the programmer executes the compiler spetifies the main module. When
the compiler encounters an “import” statement, aarshes the file system for the
interface file. If it cannot find one or if it firedone that is out of date, it searches for a Pit
source file, generates the interface file fronautgl adds it to a list of modules that need to
be compiled. After compiling the main module, @nepiles the modules in that list
following the same scheme recursively. When itsti@s, it runs the linker and passes it
the name of the main module. Similarly to the cdarpithe linker finds object files and
libraries on the file system automatically basedlm names of the symbols it needs to
resolve. This way the system can produce the eablautvith no manual specification of
what commands to run or what source files (besidesnain module) to use for input.
The language and system libraries and third-pabnaries might include the interface
and object files without source code. Note that thiokay, because if the interface file
and object file for a module are available, the piben skips compiling that module.

Other languages support similar functionality, bthis is a new feature in the
realm of operating systems written in C. Whileastpreliminary steps may be necessary
to preprocess source code or installation stepsheayecessary to copy the program and
accompanying files into place, the basic compitapoocess is automatic and simple.

4.4 Arrays

Typically, homogeneous arrays are less flexiblg, thay require less memory
because the size and type of each element needberdyored once instead of for each
element. C supports homogeneous arrays of any byp&ot heterogeneous arrays.

Perl only supports homogeneous arrays of 8-bitgeng as a special case for
storing text strings efficiently. Surprisingly, shivorks well for most applications because
the majority of homogeneous arrays can either é&steéd as atomic 8-bit strings or store
elements large enough that the extra informatiogsdwt have a significant impact on
memory usage. However, there are important exaegtifmr example, Perl cannot deal
with a large array of 16-bit integers or floatingipt numbers efficiently, making it
unsuitable for rendering graphics. (Perl can gtihy a major roll in a graphics
application by using C libraries to deal with imagenipulation or 3D calculations.
However, coupling two languages is cumbersome.)

Like Perl, Pit’'s auto variables cannot store honmegels arrays, except for strings
of 8-bit integers (to accommodate UTF-8 stringgtelt work will probably improve auto



variables to support homogeneous arrays with ahtypa. Pit’'s primitive arrays, like C,
support any primitive subtype. Converting betwgeimitive and auto variables is as
easy as assigning one to the other, however ifudo \zariable containing an array is
assigned to a primitive array and there is an ef¢raéthe wrong type or the primitive
array is too small, an exception is thrown. If gheng is too large, the extra elements are
assigned a null value.

45 Structs and hashes

Structs are, of course, borrowed from C. A strgcéxactly the same thing in C
and Pit. Perl has no support for proper structs,abstruct can be approximated with a
hash, since structs and hashes represent neardanhe thing: A set of names mapped to
a set of values. The primary difference betweemutsand a hash is that the elements of
a struct are static, while elements of a hash eaadued or deleted at run-time. In Pit,
auto variables cannot store structs; instead, ictstan be approximated with a hash.
Primitive variables can be declared with the sttype.

4.6 In-line assembly

In low-level programming, it is often unavoidabke use in-line assembly code
(however undesirable it may be) for interactionhvhardware, manually optimizing code,
switching tasks or managing memory pages in anabipersystem, etc. Pit’s interface to
assembly code is similar to GCC'’s interface for C.

4.7 Exceptions

Fundamentally, an “exception” is a branch that @t several functions
simultaneously, usually used for error handlinga niost languages, exceptions have
additional features that significantly improve thesability, but this is the basic meaning.
The best that C has to offer are the setjmp angjham symbols. These are quite clumsy,
as they have no mechanism for allowing intermediatestions to clean up when an
exception occurs, and they require a storage Variabbe manually passed to functions
that may throw the exception.

Perl supports exceptions also, but its supportusisy in a different way; error
messages in Perl are always in the form of usendity strings, for example, “No such
file or directory”. This means that the only way toprogram to trap a particular error is
to match the user-friendly string. If the striniganges, for example because the user
speaks a different language or uses a differentatipg system, the trap for that
particular error breaks. Perl has some librariesitigate this problem, but they are not
widely used. Pit provides a way to report a depbledalentifier for an error, a way to
map that identifier to a user-friendly message, andlay for intermediate functions to
clean up their workspace when an exception occurs.

4.8 Abstract data types

C can handle abstract data types in an extremelyuataway. Perl supports
abstract data types quite well. Pit uses auto blasato support abstract data types in a
way similar to Perl. However, the description oé ttnechanics is too lengthy for this
paper.



4.9 Native vector math

In Pit, arithmetic operations on arrays perforneasonable vector operation when
appropriate. For example, adding two arrays toggtheduces a third array where each
element is the sum of the elements in the saméi@oan the input arrays. Assigning one
array to another copies the values as if each imhgal element were assigned. Adding a
scalar to an array adds the scalar to each elemdht array. Multiplication and the
other arithmetic operators work the same as addifllhe benefit of this, besides easy
vector math, is that the compiler can easily optanthese operations for the target
architecture using the CPU’s vector math instrutio In C, optimizing vector math
typically requires rewriting code to use architeetapecific libraries.

Unlike C, Pit does not use the name of an arragpoesent a pointer to the array
(rather, it uses the reference operator just lika any other variable). This alleviates the
ambiguity as to whether adding two arrays meansngdtheir memory addresses or
adding their elements. To do the former, the refegeoperator is used to get their
addresses before the operation.

4.10Eval

As a compiled language, dynamic code evaluatiadifieult, at best. While it is
possible to add this later, no work has been doné¢hs. The language itself does not
preclude an eval statement; it is only difficultchase the compiler for this language
generates stand-alone machine code.

Parsing code during run-time is easy; this requirdibrary that contains most of
the logic of the compiler's phases, such as paysapgmizing, and code generation.
When the compiler encounters an eval statemestdtld insert calls to the compiler
library. The difficult part is resolving symbol nasiinside the eval that refer to lexically
scoped symbols outside the eval. Currently, the esanf these symbols are lost in
translation. The compiler needs to be modifiechtdude a table of local variable names
in the machine code’s output, and there needs tanb&P| for communicating variable
locations and execution results between the ewvaltte and the compiled code. This is a
brief analysis, so there may be other difficulti@e®vercome.

5 Improving security

Automated memory management typically found in malvstract languages has
benefits beyond saving significant amounts of woltkcan entirely prevent some classes
of security holes, such as buffer ovetfuar integer overfloW™ bugs.

5.1 Related work

General concern over computer security is probablgld as wide-spread use of
computers for routine tasks. In 1972 James Andensoblished a report for the
Electronic Systems Division of the US Air FofteThe primary concerns of his report
were security between users of time-sharing systamssecurity between computers on
a network. For its age, his report is surprisinglievant to modern computing. Security
between users is at least as relevant today aasiirwl1972 (even if multiuser machinery
has perhaps declined), because most operatingrsy/sige it to minimize the threat that
applications pose to each other. For example, eeseunning Apache and MySQL



typically executes them with limited privileges ssparate users so that if Apache is
compromised, MySQL is still protected. The impodarof security between computers
has grown explosively as the Internet has grownabse nearly all computers are now
connected to the Internet. However, it wasn’t utti¢ 1990s that the industry widely

acknowledged that the numerous subtle securitysflawsoftware affect everyone, not

just organizations with especially sensitive secrich as the US Air Force. Today,
security is such a high priority that many user agcept severe performance penalties
(especially in situations where faster hardware aampensate) or use software that is
significantly inferior in other ways. On the othleand, there is significant successful
work on reducing the cost of security, where cefns to every trade-off — performance,
maintainability, capabilities, hardware, etc.

Solutions for minimizing security holes in low-ldw&ftware are still relatively
sparse, and many common languages and programst@nedie-spread concerns about
security. It wasn’t until 1988 that the first doceimted exploitation of a buffer overrun
appeared in the form of the Morris Worm. Interegiyn the report from Cornell on this
incident'® mentions mutual trust between computer users upisopoint, and a desire
not to “build walls as high as the sky” to protagainst intruders. In today’s environment
of persistent identity thieves, spammers, bot-npistes, and costly hoaxes it seems
strange to look back on a time when we were so noeraed with security. Looking
back, it seems obvious that the Morris Worm wassadfer waiting to happen, however
at a time before online shopping and personal coenpdior everyone raised the stakes, it
probably wasn’t unreasonable to assume attackeld be tracked down and prosecuted
the same way they are with physical security breach

In 1996, the community’s equilibrium was again puated by Aleph One. This
time, there was no turning back. Computers hatheated the public to the point where
too many people were interested in breaking sactoiignore the issue any longer, and
now Smashing The Stack For Fun And P fitetailed exactly how to take advantage of
unchecked buffers with an explanation most noviaekbrs could understand. This is
roughly when intense work started in securing safevagainst dedicated attackers and
setting up ways of quickly responding as new ségimbles are discovered. The pattern
of the buffer overrun programming bug has beenngsitingly pervasive and persistent.
In spite of 12 years of auditing since Aleph Onethopen the gates, old buffer overrun
bugs are still frequently discovered, and new oaes frequently introduced. Simply
learning to write bug-free code has proven to benooe effective at eliminating buffer
overrun bugs than at eliminating bugs in general.

Starting roughly 2003™  attackers started exploiting integer overflow $amd
soon other non-control-data attalk<Exploiting these bugs is a more subtle exeraisk a
varies more between programs, but as it becomedehdor attackers to find buffer
overrun bugs, they will undoubtedly focus more timeo bugs.

Many tools have been developed that focus on detgbuffer overrun bugs at
run-time. These can help developers fix old code raitigate security risks, but none of
the run-time tools can detect a bug without ac¢ase that triggers it, and several types of
errors are not reported by any of them, includingeger overflow bugs and buffer
overrun bugs within a data structure. Dynamic Buffverflow DetectioH® surveYs
some tools in this category including Valgiiy CCured®, CRED*?, ProPolic&?,



StackGuarld!, Tinycd*, Chaperon, and Insure++. Safe S]ystems Programming
Language’$? surveys Safe®, cCured, Vault®®*¥, and Cycloné¥.

Cycloné® represents good work, but does not provide a cetamolution. It
extends C by tagging pointers syntactically inafiéiht ways to provide bounds-checking.
However, to take full advantage of its featuresunexs modifications to the code that are
so extensive that it is no harder to simply rewtiite code in a new language. Also, the
programmer still has to specify how much memoryeiguired, and Cyclone aborts the
program when an allocation bug is detected rathstracting out memory allocation
entirely. This protects the system from intrusibnof does not actually fix any bugs.
Often, aborting execution is not an acceptable tewlu Further, Cyclone does not
address integer overflow bugs. Writing code inlGye is more confusing than writing
code in C because it provides several tags forte@rand the programmer needs to know
which tag to use in each situation. Writing codé?it with auto variables is simpler and
easier, and actually fixes these bugs. Cycloneiges optional garbage collection, but it
uses mark-and-sweep techniques, which exclude nmapgrtant programs including
kernel code and time-critical code. (Pit usesregfee-counting garbage collection.) In
Cyclone, the programmer must still explicitly cdate the amount of memory required
for allocations; automating this is a key ingrediehautomated memory allocation.

Safe® similarly protects against buffer overruns withn4time bounds
checking, but sacrifices performance to avoid coadifications. Vault®®¥ is an
entirely new language that does not support pogrighmetic, which makes it unsuitable
for kernel code. It also suffers from the disadeget of requiring the programmer to
explicitly track memory allocations while restrioty pointers so tightly that it could have
automated memory management entirely.

SmashGuard! presents a solution that is interesting becatisdiritplemented in
hardware so it requires no modification to applaratcode and incurs no overhead. Its
disadvantages are it protects only against attdnagarget function call return addresses,
it requires minor kernel modifications, and of ceejrrequires new hardware.

Transparent Runtime Randomizafidhand Address Obfuscati6hchange the
memory layout of applications with each executibhnis is effective against most attacks
because the attacker generally cannot predictehawor of the program closely enough
to compromise it. However, this does not proteciirag} non-control-data attacks or
potential denial-of-service attacks because of mmgcrashes. PointGuéidis a tool
with a different approach but similar results. Ratthan rearranging the application’s
memory layout, it encrypts pointers when they arenemory so that a corrupted pointer
will be decrypted to an unpredictable address ledbeing accessed.

The methods that detect an attack in progress laod #ne program do not fix the
underlying problem that there is a bug in the safew Detection is a big improvement,
and in most programs, this is a “safe” thing to dithough the program behaves in an
undesirable way, disaster is averted. In many cdsasever, aborting a program is
dangerous. For example, an abort in the kernel evdsh the computer, resulting in
down-time and often lost data. A trapped bug inatabase server can cause equally
catastrophic results. An attacker may exploit amghsbug to deliberately keep a service
off-line. While sensitive data is not revealed #olution is still not good enough.

Vault and Cyclone extend C but make code more ceated, and more
complication typically means more errors. It is maesirable to simplify code through



abstraction instead, and automated memory managemien powerful tool for this.

Automated memory management also addresses noroledata attacks and integer
overflows, which most of the above methods do nmtsaer. However, low-level

developers have historically avoided languages thaivide automated memory
management because these languages also prevesds air raw pointers, in-line
assembly, and necessary optimization techniquesito(dated memory allocation
includes allocating and freeing memory without &iplstatements. It also includes
extending buffers to avoid overruns and widenirtggers to avoid overflows.)

This history suggests the following conclusionswé@&s designed before security
was a major concern, and unfortunately in sevegtswt is impossible to extend C in
ways that would solve the problem once and fowéhout significant changes to all the
code in need of protection. The best way to soleenory allocation bugs is obviously to
automate memory allocation, but before low-leveledepers can use automated memory
allocation, there needs to be a language that stgppoth memory allocation and access
to raw pointers. Such a language not only fixesath@cation bugs but also simplifies
much code.

The primary disadvantage to creating a new langisg®at it requires rewriting
code, but no solution has been presented yet Hratfudly protect a program without
either unacceptable complexity, unacceptable aosfficiency, or loss of access to raw
pointers. Full protection includes protecting budféhat are part of a struct, and by design,
C allows an array contained in a struct to be awerand many programs utilize that
feature in reasonable ways.

5.2 Analysis

Even today, after so much study and work, cuttidgeeoperating systems still
have a dismal outlook on security. Even if all thegs were fixed in existing code, new
ones are constantly introduced with new code. kample, nobody reasonably expects
the existing operating systems to ever be freeuffeboverrun bugs until there are new
innovations. Until then, the industry must settde staying one step ahead of attackers.
Operating system code is perhaps the most widelgt aede, since every computer needs
it. This probably makes it the most targeted camtarfalicious attackers and probably the
most widely audited code as well, but to date, nlybwas produced a modern operating
system that is free of security problems. OpenBSPprobably the operating system with
the most proactive approach to security, and afteny years it is still unusual for them
to go even a few months without finding anotherffé@ubverrun bug®. Many good ideas
have been developed to improve security for lovele@ode, and yet all have fallen short
of complete success, where a successful approacit ashieve a high level of
confidence that the code has no buffer overrun bugsnteger overflow bugs, and do so
without a loss of efficiency. In general, when thaper refers to security, the scope is
limited to memory allocation, buffer overrun, amdeiger overflow bugs because they are
the bugs that this programming language can ha&pent, and this class of bugs covers
the overwhelming majority of security holg&*/#

C is the language of choice for operating systededor good reasons. Low-level
programmers absolutely need easy access to iraisembly code for hardware 10 and
setting special-purpose CPU registers. Also, thesdrto be able to write efficient code,
as speed is a major point of competition betweegraipmg systems; this means that if



there are any inefficient high-level features, tmesed to be optional. (C has no such
features) A language that requires an interpreteviual machine is clearly not an
option. Perhaps most importantly, programmers neddve a clear idea what the output
of the compiler will be, because they are workingan environment where many CPU
facilities are often unavailable. When the tratisfais too abstract or layered too deeply,
a low-level programmer will often become frustratertause the compiler will generate
unexpected output that may, for example, interfevigh the kernel's memory
management, use floating-point facilities when ttegg not available, or attempt to
access variables that are temporarily unavailabtemplex tools lead to more of these
problems than simple tools of equal power. To eslithis, source code that does not
use auto variables will never be translated intehiree code that automatically manages
memory. Because the extra features have no impatte output unless they are used,
Pit works at least as well as C for low-level coBd.fits all of these requirements, and
provides a way to choose when to use automatic memanagement as well. Pit also
interacts more easily with C than most other laggsa This makes it a good step
forward from C with little cost.

Pit is by no means a silver bullet. The advantagthat the programmer gets to
choose whether the benefit is worth the penalttherathan being forced to write an
entire module in a low-maintenance high-overheadjuage such as Perl or in a high-
maintenance low-overhead language such as C. f&otigkly use Pit, a programmer
must choose wisely between primitive and auto Wéem This requires a balance of
efficiency and maintainability. As long as a pragraer only uses auto variables, there is
an absolute guarantee that his code will not h&vese security bugs. However, this
guarantee comes at a cost to efficiency that enastgnificant. On the other hand, every
time a programmer uses primitive variables, he thagisk of introducing security bugs.
It is well-established that program execution tisieelated to Zipf's Law. Specifically, a
small amount of code accounts for most of the etxacuime of a program; a widely
accepted estimate is that 10-20% of the code atsdon80-90% of the execution time.
(The sections of code that account for most ofekecution time are the “time-critical
sections” sections of code.) On the other handf'<Zipaw does not apply to security.
When considering execution time, a program can dreesvhat less efficient, but a
program cannot be somewhat less secure. It's egbeure or not, because when an
attacker discovers a security hole, typically tHeole system is compromised. This leads
to the conclusion that while all the code in a pamg must be secure, only about 10-20%
of it needs to be efficient. It is easy to take awage this in Pit. If only 10-20% of the
code is written using primitive variables, then tigk of security holes is eliminated in
80-90% of the code. Additionally, this leaves peogmers more time to carefully audit
the remaining code for security bugs, both bec#usgdon’t need to audit the other code
for these bugs and because the other code wag easiefaster to write initially. To
benefit from this aspect of Pit, a programmer madbe willing to accept this trade-off
and use it to his advantage. Most of the existeésgarch for detecting security errors in
C code or aborting a C program when a buffer oveoccurs is easy to adapt to Pit's
primitive variables. Such an adaptation shoulddsgjty assume auto variables have no
such security errors and do the security checkitlg @n primitive variables.

Perl has already proven this approach. When uRanfy programmers write most
of the code in Perl, but call C libraries to do #meall amount of work that consumes a



large amount of CPU time. The Perl code cannothawfer overrun bugs, (with the
bigint extension) integer overflows, double-freeoes, memory leaks, non-control-data
attack®’, etc. However, Perl’s approach requires the awthwlavision of a program into
high-level and low-level parts and is entirely uale for writing low-level software, as
discussed in the introduction.

5.3 Buffer overrun: C comparison

Simplifying code reduces human error. Human ersothe only reason new
buffer overrun bugs are introduced into code. VMewse a short program written in C
and a short program written in Pit to demonstratev husing Pit's auto variables
simplifies code and eliminates the risk of buffeemuns by abstracting the logic for
memory allocation out of the written code into toenpiler and language library.

Figure 1 shows a C program that adds pairs of ntsntead from standard input.
Figure 2 shows the same program written in Pit.idéothat in Pit, auto variables can
manage all the array sizes and memory allocations eliminating any potential for
mismanaged string buffers. As shown in Figure 8ytban also be managed manually
just as easily as in C, with the same risk to sgculhis is the trade-off between
improving efficiency and improving security and miainability.

While Figure 1 has no buffer overrun vulnerabisifi¢ghere are several ways they
could easily be introduced either when the codaadified or as a simple miscalculation
when writing it in the first place. For examplegtivrong size could be passed to fgets(),
a pointer error could be introduced where the gtiparsed with strsep(), or an error
could be introduced in the format string passegriatf(). Also notice that the code sets
an arbitrary limit on the length of an input lired while it is obviously possible to work
around this, doing so makes the program much mamplkex and adds more
opportunities for security holes. For example, dyitally allocating just enough
memory to hold the input can lead to accidentakeiing a dynamically allocated chunk
of memory twic& or misusing realloc(). These are the very ertbad are commonly
found in C code, but never found in Perl code.

Figure 2 shows the same program, this time writeRit using auto variables.
Notice that neither the length of a string nor anf® into the string are ever used, and
the bounds on any indexing operations for autoaldes are checked at runtime. All the
sizes calculated automatically because memory raged automatically. This means the
opportunities for security holes that were preseiitigure 1 are eliminated.

Figure 3 is an exercise in optimization, tradingnfatence in security for
efficiency. It shows the same program written iy Ehis time using some primitive
variables. Notice how primitive and auto variabéssily work together, allowing the
programmer to choose precisely what code to opéiniiar efficiency at the risk of
security and maintainability, and what code to ropte for security and maintainability
at the cost of efficiency. In particular, notettl$in is implicitly converted to an auto
variable when passed to $string.split with littiost on the programmer’s part. This
level of interaction is impossible when using taaduages such as Perl and C together;
instead, the programmer must write two separateutesedand tie separate functions
together. A programmer can use this, for exampeefficiently do time-intensive
calculations of plotting a temperature graph fraustworthy input data in the same



function that parses distrusted inputs strings franweb browser to choose color
preferences or add decoration.

1. #include <stdio.h>

2. #include <string.h>

3.

4. int main() {

5. char in[1024], *inptr, *num;

6. int first, second,;

7.

8. while(fgets(in, sizeof(in), stdin)) {

9. inptr =in;

10.

11. if(! (num = strsep(&inptr, " ")))
12. continue;

13. first = atoi(num);

14.

15. if(! (num = strsep(&inptr, " ")))
16. continue;

17. second = atoi(num);

18.

19. printf("Sum is %i\n", first + second);
20. }

21. return O;

22. }

Figure 1. Example program in C.

1. importio;

2. import string;

3.

4. public function(out int $exit_status) $.main = {
5. private auto $in, $nums;

6.

7. /I $io.stdin is a global symbol. =>is

8. /I the method-call operator. readline

9. /I is the name of the method that reads

10. /I a line of input. The line is stored

11. /l'in $in and returned. Dots are

12. /I simply part of a symbol's name

13. Il indicating its namespace.

14. while($io.stdin=>readline(ret $in)) {

15. /1 $string.split() is a function that
16. /1 splits $in on " " and stuffs the
17. /I result into $nums as an array of
18. /I strings.

19. $string.split($in, " ", $nums);

20.

21. /I Convert the strings to integers.
22. $string.2int($nums(0));

23. $string.2int($nums(1));

24.

25. /I The object $io.stdout has a method
26. /I called writef that is semantically
27. /I analogous to C's printf().

28. $io.stdout=>writef(

29. "Sum is $sum\n”,

30. hash {

31. "sum", $nums(0) + $nums(1),
32. h

33. );

34. }

35.

36. $exit_status = 0;

37. }

Figure 2. Rewrite of Figure 1 in Pit.



1. importio;

2. import string;

3.

4. public function(out int $exit_status) $.main = {
5. private string(char, 1024) $in;

6. private int $in_len;

7. private auto $nums;

8.

9. loop: {

10. /I Pit strings are _not_ null-

11. / terminated. $in_len is an in-out
12. /I parameter. Going in it's the

13. /I maximum length of $in and coming out
14. /I it's the actual length of $in.

15. $in_len = sizeof($in);

16.

17. /I _p means primitive. => is the
18. /I method-call operator.

19. $io.stdin=>readline_p($in, $in_len);
20.

21. /I readline_p modified $in_len

22. unless($in_len) break;

23.

24. /I Split works with autos, so this
25. /I type-cast is required to tell the
26. /I compiler that the string $in is
27. /I shorter than 1024 bytes.

28. $string.split($in[string(char, $in_len)], " ", $n ums);
29.

30. /I Convert the strings to integers.
31. $string.2int($nums(0));

32. $string.2int($nums(1));

33.

34. $io.stdout=>writef(

35. "Sum is $sum\n”,

36. hash {

37. "sum”, $nums(0) + $nums(1),
38. h

39. );

40. }

41.

42. $exit_status = 0;

43. }

Figure 3. Some speed optimizations to Figure 2.

5.4 Integer overflow

Integer overflow bugs are more insidious and armauzh newer problem than
buffer overrun bugs that have not gained noticél anbund 2002. The pattern of this
bug is that the program will behave unexpectedlenvian integer’s value overflows
during arithmetic. These overflows happen in twmmmon situations, either while
adding two positive or two negative numbers (ortadbing equivalently) or while
multiplying. When adding a positive number to gatéve number there is no problem,
and when dividing there is no problem. (Code tbalculates powers for memory
allocation is much more rare, however that doesentitely exempt power calculations
from concern. Multiplication is bad enough for aliscussion.)

First, consider adding. Adding two positive nunsberth an overflow produces a
negative result. An easy example is overflowinglevincrementing. While iterating
over the characters in a buffer, if the counterialde overflows, the code will
accidentally follow a negative offset into the lauff This particular situation isn’t



terribly difficult to handle in a number of waysutbextending the example into
multiplication shows a far more severe problem.

The resulting sign of a multiplication is not aiable indicator of overflow.
Multiplying two fairly small positive values may guiuce an overflow so large that the
result wraps around more than once, producing atip®sresult. For example,
multiplying 65536 by 65537 using 32-bit integersuks in a positive value much smaller
than expected. Multiplication is used in calculgtithe memory address of array
elements. This is the root of the problem in théoving example.

Just last year (in 2008), CUB% announced a patéH for an integer-overflow
bug leading to remote exploitation and local pegié escalatidff. The problem was
that the result of multiplying two integers and §iag the result to calloc() could result in
an allocation smaller than expected. In subseqoedé, iterating over this allocation
results in overrunning the allocation even thoubk tounter variable stays within
reasonable boundaries. If calloc() instead usedrdoounded integer for its parameter
there is no concern at all. This would allow cef)ao simply return an error indicating
that it cannot allocate the requested amount of amgmThe solution for this C code is
an awkward check to be sure each input variabhetgreater than 32767. Additionally,
there is nothing to indicate to code maintaineas gart of the reason for this bound is the
size of the type Ichar_t. Note that this classpaofblems and this solution can be
extended to most functions that write to calleoedited buffers, such as read(), fread(),
recv(), fgets(), etc.

5.5 Conclusions on security

Defining a new low-level language with specific tig@s for memory
management is a promising approach to improvingyttadity of low-level software. So
far, research in the area of buffer overruns atebger overflows have focused on either
detecting these bugs or adding features to C thetifically deal with these problems.
Thus far, these approaches are either incompleteage software much harder to write.
Pondering the larger point of view of using autasdamemory management, which is a
nonspecific tool that’s useful in many ways for plifying code in general, reveals a new
point of view for preventing these problems.

Pit avoids infrastructure that usually deters paogmers from choosing other
languages for low-level code because of high owatle unpredictable behavior, such as
an interpreter, a virtual machine, or a mark-anédegwgarbage collector. There is no
performance penalty to using Pit when the programcheoses to use only primitive
variables. When the programmer chooses to use \artables, there is a cost (how
much is yet to be seen). However because of tAéaelof Zipf's Law to execution time,
the penalty of automated memory allocation will betimportant in most of the code.
When efficiency is necessary, Pit provides an etxgeglly easy way to interface auto
variables with optimized code. Perhaps the biggdstantage is Pit’s ability to describe
time-critical sections in efficient terms while peoting the rest of the code from buffer
overruns, integer overflow bugs, non-control-dattacks, double-free bugs, and other
memory allocation bugs. These considerations niik@ superior language for low-
level programming.



6 Improving portability

Portability refers to the effort required to tragrsé program from one system to
another. Another long-standing problem with C iegstams usually must be distributed
in source form, and the time-consuming procesofpiling must be done by end-users.
For large applications on a mid-range computes, tan literally take days of CPU time,
to say nothing of the time required of people. Tihigecessary because at compile-time,
a program is locked into a particular version opaticular operating system on a
particular CPU. There are some systems to mitithase for example, the FreeBSD Ports
Collectior™ is a repository of software that has already bestched as necessary to
allow it to be easily compiled on FreeBSD. Thisus®d to create precompiled packages
that may be installed quickly by end-users. NetB8id OpenBSD, as well as several
distributions of Linux, have similar facilities fanstalling common software. These
projects represent an enormous amount of ongoingtemance, because each port must
be individually updated whenever original autholeases a new version and because
these systems frequently break as a result ofatrdifferences in the C system library
between systems. This often introduces an longydsdfore users can run new versions
of their favorite software.

Unfortunately, the availability of such a portingseem has become a major
consideration when choosing an operating systefmmer@ise superior operating system
distributions may be abandoned because they laokgstsupport for ported software.
Many software packages are simply unavailable fanyrmoperating system distributions.
Complicating systems further, some operating systemplement awkward compatibility
layers for software that is only distributed fohet operating systems; for example,
FreeBSD implements a compatibility layer for Linseftware, but to use this for a
typical Linux application, an additional Linux vess of every shared library must be
installed. Many programs are not available for B®P at all, except by using an
executable compiled for Linux on this compatibiligyer.

While natively compiled code obviously cannot betaole between hardware
architectures, it is not impractical to make objéitds portable between operating
systems on the same architecture. To do so, thensybbrary needs to provide a
consistent interface to the operating system, ans by object files, not just as seen by
source code. (Here, interface refers to a setmftion prototypes and global variables.)
This interface must be extensible in a way thataiesh back-compatible at the level of
machine-code.

The goal is to translate any application into objéles just once for each
hardware architecture, then distribute the objdest fto all operating systems for that
hardware architecture. The installation procedinfes the program and copies it into the
appropriate place on the file system. While thei still be portability issues, most
notably the locations of files in the file systethis will substantially reduce the effort
required when porting software. System-specificfigomation issues such as paths can
be addressed in other ways. Typically, softwarealteion should entail downloading
the software distribution, linking the distributetject files with the system library and
third-party libraries, and copying the executabted ancillary files into appropriate
locations in the file system.

Traditionally, the number of times a program mustcbmpiled can be described
as the product n*m, where n is the number of hardwaechitectures and m is the number



of operating systems. If object files are portabktween operating systems, this is
reduced to n, because the object files can be d¢edhpnce and distributed in compiled
form. To do this, parts of the compilation tha¢ aependent on the operating system
must be resolved at link-time or be eliminatedphaag them before creating modules
locks the modules into a target operating systermil@At is unlikely that all portability
issues will be resolved for all programs, this agh will significantly reduce the work
required for most programs.

As mentioned above, the object files need a cadishterface to the operating
system. To accomplish this, the bindings betweenatplication and the system library
must be loosened in two important ways at the le¥ebject code:

* The system library cannot define preprocessor nsatiat are used in the
application’s modules, because the contents oethexcros are almost certain to
change. This is generally not a significant issuiit because it does not require
a preprocessor.

» Variables passed between the system library ankitappns must be represented
in a consistent way. Most importantly, this incladetegers and structs.

6.1 Removing the preprocessor

[1. #define EMIT_FOO_FLAG(a) ((a) & 0x40 ? puts("True") - puts("False™)) |

Figure 4. A preprocessor macro for a C library tha causes dependent programs to
lose portability when translated into an object fies.

int emit_foo_flag(a) {
if(a & 0x40)
return puts("True");

return puts("False");

-}
igure 5. A C function that does not have the dif€ulty described in Figure 4.

1
2
3.
4. else
5.
6
F

C’s preprocessor carries much blame for binary nmgatibility. In C, a library
can declare macros that the compiler resolves winercalling module is compiled, and
on another operating system, this library may assiidferent values to these macros.
Module interfaces should avoid preprocessor maano$avor of variables declared
“constant” and function calls. For example, if théneader file fragment shown in Figure
4 were in a system library, it would cause objdesfcompiled with it to be incompatible
with any system that implements the contents ofntlaero differently (for example, by
changing the value 0x40). Changing the preprocesswro to a function (Figure 5)
prevents the compiler from resolving the dependeatycompile-time; rather, the
dependency is resolved at link-time, and linking ba postponed until after the program
is distributed.

Pit does not include a preprocessor. Preprocessbures are obviated in ways
that avoid portability problems. There are thretoas typically performed by the C
preprocessor: substituting constant values, applyirline calculations, and including
header files. The first two are detrimental to pbitity and are trivial to accomplish with
constant global variables and functions. In placthe third, Pit uses “interface files” to
describe the symbols in a module. The compilerraat@ally generates an interface file
when it translates the module the interface filscdbes. The calling module uses the



“import” statement to reference the interface filthe import statement is roughly
equivalent to the "#include” statement in C's pagamssor. (The only substantial
difference is that the compiler processes impatieshents in the same pass as the rest of
the code.) While no preprocessor is bundled witls Bompiler, it is easy to apply one if
desired. As long as the effects of each preprocedstinition are confined to the
software package they are defined in, there wilhb@dverse affect to portability.

6.2 Passing integers portably

[1. int fseeko(FILE *stream, off_t offset, int whence); |

Figure 6. This C function prototype is not portabk after translation because the
size of off_t will vary between operating systems.

1. public function(in auto $file, in auto $offset, in char $whence) $seek
prototype;
Figure 7. This Pit function prototype is portable because $offset can be any size
integer. At run-time, the system library will convet it to what the kernel requires. If
the conversion would truncate the value, the systeribrary throws an exception
back to the caller. $whence is simply the letter bh, or e, meaning the offset is
relative to the “beginning”, “here”, or “end”. This way, the C preprocessor macros
SEEK_SET, SEEK_CUR, and SEEK_END are unnecessary.

In C, when passing variables to functions in th&tey library, the representation
of many integers is system-dependent. For exangffet and time_t vary between
operating systems, and code compiled with one tiefinof off t and time_t breaks
when moved to a system with a different definitiddolving this requires auto variables.
If a parameter to a function is represented asuém \ariable, it can be extended without
recompiling existing code because of the structdescription auto variables include
during runtime. For example, consider file 10 ftions. Rather than representing the
offset into a file as a statically-sized integershswn in Figure 6, it is represented as an
auto variable, as shown in Figure 7. Clearly, g#okition will sometimes involve a cost
to efficiency. This cost is not as severe as itmseat first, however, because not all
values need to be passed in an extensible wayeXample, any value that represents
something bounded by memory can be representedanitinteger whose size matches
the hardware’s pointer size, referred to as a ‘hadljusized integer”. Pit guarantees that
the size of “int” will always be naturally-sizedp shere is no need for the “size_t” and
“ssize_t” types provided by C. Thus, any integepresenting, for example, an array
index, array size, or the size of anything stomrednemory can be represented with a
naturally-sized integer. If the architecture isegxded to a larger pointer size, for example
with the recent 64-bit extensions to x86, all tbde must be recompiled anyway because
the size of a pointer will change. Naturally-sizategers represent most of the integers
passed between functions, leaving only a few ofmtheequiring the extensible
representation provided by auto variables.

Most numbers that represent the size of an objeat ¢annot fit in memory
represent IO routines where the CPU speed is molirthiting factor. Referring back to
the file 10 example, consider an integer that re@nés an offset into a file. A file’s
maximum size is dependent on the operating systetrthe CPU architecture. In the not-
so-distant past, file sizes were represented wWithiBvariables, limiting files to 4GB. At



the time this was decided, it was wasteful to asgdr values; an “industrial size” array
of hard disks occupying many large machine roomghtnapproach 4GB. Today, the
industry uses a 64-bit value for representing t¢dfseto files, but it is unreasonable to
rely on that being large enough forever, partidulaith the proliferation of distributed
storage systems such as RAID in the consumer mdrkdéact, Sun Microsystems has
already introduced ZFS, a file system that suppdigk arrays larger thar’2bytes in
size, and as very few operating systems currehily with a system library that does not
use a 64-bit integer for this, another transitiah lae necessary eventually. Standard C
libraries address this by using off_t to repregiatoffsets. While this allows the size to
be increased without modifying the source code poogram, this is still unsatisfactory,
because it requires the compiler to generate difteassembler code depending on the
target operating system’s definition of off_t. Signpompiling two versions is infeasible,
because other data types are likely to be in ttiansas well, each of which doubles the
number of compiled versions required. A better sotuis to abstract the type of a file
offset out of the compiled code entirely (Figure Ah auto variable can represent the
integer without requiring a particular size; thecamt of memory allocated by the run-
time library will always be sufficient to represehe number.

While representing a file offset with an auto vhleareduces efficiently, the only
time a file offset is communicated to the systdmndiy is when seeking to a new location
in the file or querying the size of the whole fiRoth of these operations are heavily
bounded in speed by their hardware 10 requiremé@ntparticular, seeking to a new
location on the disk), not the CPU, so the cosukhaot be measurable. When reading
or writing the file, the maximum amount that canrbad is bounded by memory, so a
naturally-sized integer is guaranteed to be séffitiwhen representing the amount read
or written in a single call. For example, Pit's aglents to C’'s read() and write()
functions use a naturally-sized integer since thety require a buffer in memory, but the
equivalents to Iseek() and fstat() use autos toesgmt the file size. There may be
examples of other system library calls that haveyeb been analyzed where the cost to
efficiency must be weighed against portabilityofitimizing does not yield satisfactory
performance for these examples, one possible saligi to provide two interfaces, one
that uses auto variables for portability and ora¢ tises fixed-sized primitive integers for
speed.

When providing a portable interface, integers mayrépresented as primitive
variables everywhere except where the parametsepdbe interface. For example, there
is no compelling reason as far as portability isaaned for the system library to use
auto variables after receiving a parameter to atfan call, because the internals of the
system library may easily be changed without chamdhe API. Also, for situations
where the value is otherwise bounded by the desfgtne caller, the caller may use
primitive integers to represent the value. In thesges, the compiler will automatically
promote the primitive integer to auto variable whsatting up the parameters to the
function call and immediately assign the value fwimitive integer in the system library.
In this case, the inefficiency is minimized by nmnizing the number of operations
performed on the variable while it is representedaa auto variable. As long as the
parameter passes the library’s interface as anwauiable, the interface remains portable.

In short, while there is some cost to using autdabées to pass integers to
libraries, the cost can be minimized to a point rghieis negligible in most cases.



6.3 Passing structs portably



1. #include <string.h>

2.  #include <sys/types.h>

3.  #include <unistd.h>

4.

5.  /* Network-related includes */

6. #include <arpal/inet.h>

7.  #include <netinet/in.h>

8. #include <sys/socket.h>

9.

10. int main() {

11. struct sockaddr_in my_addr, their_addr;

12. int sockfd;

13. char buf[1024];

14. ssize_t ssz;

15.

16. /* Prepare my_addr and their_addr, which are tempo
passed to bind()

17. *and connect(). Notice the very important, but e
call to

18. * memset(). This is required because implementat
optional fields,

19. * and we must pass zero for these, not an uniniti

20. memset(&my_addr, 0, sizeof(my_addr));

21. my_addr.sin_family = AF_INET;

22. my_addr.sin_addr.s_addr = inet_addr("127.0.0.1");

23.

24. memset(&their_addr, 0, sizeof(their_addr));

25. their_addr.sin_family = AF_INET;

26. their_addr.sin_addr.s_addr = inet_addr("127.0.0.1"

27. their_addr.sin_port = htons(22);

28.

29. /* Open socket */

30. if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -

31. perror("socket");

32. return 1;

33. }

34. if(bind(sockfd, (struct sockaddr *)&my_addr, sizeo

35. perror("bind");

36. close(sockfd);

37. return 1;

38.

39. if(connect(sockfd, (struct sockaddr *)&their_addr,
sockaddr))) {

40. perror(“connect");

41. close(sockfd);

42. return 1;

43. }

44.

45. memset(buf, 0, sizeof(buf));

46. if((ssz = read(sockfd, buf, sizeof(buf))) == -1) {

A7 perror(“read");

48. close(sockfd);

49. return 1;

50. }

51. if(write(STDOUT_FILENO, buf, ssz) < ss2) {

52. perror(“write");

53. close(sockfd);

54. return 1;

55. }

56. if(close(sockfd)) {

57. perror(“remote close");

58. return 1;

59. }

60. if(close(STDOUT_FILENO)) {

61. perror("stdout close™);

62. return 1;

63. }

64.

65 return O;

rary structs
asily forgotten
ions may add

alized value. */

H{

f(my_addr))) {

sizeof(struct




Figure 8. A C program for connecting to the locakystem on port 22 and reading
one packet. A well-designed APl may improve this, Wt it would not change the
difficulties with portability.

1. importio;

2. import socket;

3.

4. public function(out int $exit_status) $.main = {
5. private auto $s;

6. $socket.new($s, hash {

7. "network", "ip4",

8. "transport", "stream",
9. "laddress", "127.0.0.1",
10. "raddress", "127.0.0.1",
11. "rport”, 22,

12. DX

13.

14. private auto $buf;

15. $s=>readline($buf);

16. $io.stdout=>write($buf);

17.

18. $exit_status = 0;

19. }

Figure 9. An equivalent Pit program to Figure 8. In Pit, the error handling may be
omitted, because Pit uses exceptions for reportingnhandled errors gracefully. A
hash is a robust and simple way to pass all the negsary parameters in one call.
Notice that unlike a struct, the order of the elemsts in the hash does not matter,
improving portability. All the parameters passed inthe previous C example can be
combined into a single hash, greatly simplifying th library interface. Also, either
the integer 0x7f000001 or the string “127.0.0.1” mabe specified as an IP address,
because the library can check whether the auto vaable is an integer or string and
do the required conversion. As should have been denin C’s libraries, endian
conversions for port and network numbers are alwaysdone by the library — so
there’s no htons(). There’'s no need to initialize mused values because a hash keeps
track of which values are initialized.

The final difficulty with passing parameters to teys library calls in an
extensible way is the inflexibility of structs. Tee portable, a struct must always have
exactly the same format, meaning it must contaendghime elements in the same order,
each with the same type, with no additional elesierit is a long shot to decide on a
format for a struct, and then simply hope that mybwill ever change it and that it will
fulfill all future requirements. To do this for ale structs in the system library is clearly
impossible. However, the format need not be salyigy contrast, if the library uses
hashes (as a dynamic type assigned to an autdlgria place of structs. With hashes,
code can check for missing elements, the elemeatisbm in any order, and new code
may add additional elements defined after old cwds compiled. For example, if a new
version of the system library looks for a new elatmm a struct, it will simply see
whatever uninitialized garbage happens to be in ongnpast the end of the struct.
However with a hash, which elements are presestoied in a dynamic hash table, and
the existence of the element is checked at run. fithis allows the new system library to
fall back to old behavior or assume a default vafl@enew element is missing. Old code
or code compiled on different operating systemsaiemcompatible without recompiling.

Programs written in Perl have had much successpuittability, primarily due to
the flexibility of Perl’'s hash data type comparedhwC’s struct data type. Pit's auto
variables support the same hash data type as #&wgaoathe struct data type supported



by Pit’s primitive variables since they are loglgajuite similar; the only major defining

difference is whether the names of the fields dasnge during run-time. This allows
APIs for libraries written in Pit to take advantagfethe same benefits to portability that
Perl provides.

An excellent example where this is useful is thel A&? establishing a TCP
network connection. This APl was extended sevena¢d to support new networking
protocols, wreaking havoc on portability. In C, tbennect() system call requires the
programmer to pass a struct containing the famidy (INET”), port, and address. Most
define additional padding in the struct that reesrgpace used for operating system
specific parameters or other protocols such as.IP¥8is space must be zeroed for
portability, as shown in Figure 8. All this adds t0 an interface that is easier to use
wrong than to use right, and is not at all portatter compilation. This is not simply bad
library design. The interface would probably besmwbly easy to use and extend if C
provided an extensible representation of data types

Consider the Pit alternative shown in Figure 9.eH#re information is better
represented as a hash so the system library cak éreunspecified fields (rather than
relying on the caller to zero them or reading uralized memory), and the system
library can take an appropriate default action beeall the information about the hash is
encapsulated into an extensible self-describing&by even at run-time. In this example,
both the local and remote IP address and port asegal in the same call. If the local IP
and port are omitted, the system library will signpkk the kernel to automatically select
reasonable values. If the remote IP and port aigemnthe system will create a listening
socket.

With these portability issues resolved and a realsignwell-designed standard for
the system library, object files should be portdi#éveen operating systems on the same
architecture.

6.4 Conclusions on portability

Improving portability in this way may seem somewfpegdestrian, but C is
missing important tools for this job. Adding autaic memory allocation again
simplifies code, including some aspects of theesystibrary interface. For example, it
obviates the question of whether the calling furctor the called function is responsible
for freeing memory represented in a return valustrsep() and scandir() are good
examples of the former; getpwnam() and readdig)good examples of the latter.) For
another example, it obviates the possibility ofnitnalized elements in structures that
appear in parameter lists to system calls. Beyihiad, however, the dynamic typing
provided by auto variables abstracts those detdithe interface between applications
and the system libraries that tend to vary aftengitation. This allows us to reduce the
difficulty of porting programs to various operatisgstems significantly.

7 Z specification

There are a number of motivations for applying d-established formal method,
any of which is considered a viable alternativeusoh to the informal and ad hoc
practice of software desitth The application of a formal method to specifyaaguage
helps prevent ambiguity, inconsistency, and incatgpless.



A compiler is a large and complex piece of softwatdranslates a program
written in one language such as Pit into a prograanother language such as assembly
code, machine code, or perhaps C. One of the nigiracteristics of any compiler is to
preserve the semantics of the program being codhfil@herefore, developing correct
compilers that can generate faithful target cod@ouit introducing any errors is critically
important. We present a Z specificatidfl to formally specify part of Pi! to help us
design this part of the language before we begirkwo

While the semantics for primitive variables in Rite easily described by
comparing to C variables, the semantics for autgakbes require some explanation.
Conversationally, it is convenient to say that teyk similarly to variables in Perl or
Python, but this is informal and somewhat inaceut best. Intuitively, it is a good
starting point, but to describe exactly what they, ave wrote a formal description of
exactly what an auto variable is. To that end,use Z notation to describe how they
behave and, to some extent, how they are implemente

7.1 Justification

A formal specification of the semantics of autoiables is useful in several ways.
Most obviously, it allows us to reason about wisaspecified before implementation so
we have a clear idea of what to implement beforestaet. Later, it is also useful as an
aid in communicating what we implemented so thaeopeople can understand how to
use the language. It also builds confidence inahguage as a possible tool for use in a
system where safety or reliability are importanAnother benefit is it encourages
portability of code written in Pit because if someadn the future decides to improve or
reimplement the Pit compiler or the accompanyibggliies, he can return to this formal
specification for a clearer understanding of whatstmot change. This way existing
code written in Pit is less likely to encounter tadility problems between the old and
new compilers.

7.2 Related work

The formal specification of a programming Iangdﬁﬁé“] covers syntax and
semantics, which are the main constraints of anguage. The construction of a program
is described by the syntactical constraints ofléinguage. The syntax is typically defined
through a grammar that describes the rules acaprtbnwhich programs must be
composed.

Our work is related to the work by Gray efHf%. In [49], they used MetaPRL
formal programming environment to write a compledenpiler for ML-like language. In
[50], the authors used formal methods to specify pragrmg languages; their main
focus is on the reusability of formal specificasom specifying the programming
languages.

Programming languages which have been designedowélof the various formal
methods have better syntax and semantics, fewepéros and are easier to learn. But
despite the obvious advantages, attribute gramnaaismatic semantics, operational
semantics, denotational semantics or any of theratiost widely used formal methods
for programming language description have not ghipepularity and general 8%,
One reason might be that semantics is much mofieutifto describe than syntax and
semantic descriptions are not easy to read. Owttier hand, a more compelling reason



might be that they lack modularity, extensibilitydareusability. Though we are not
addressing any of these issues in our study, wee lmeated a formal semantic
specification for part of Pit.

7.3 Conventions

Z notation directly represents nothing more thdatiens between mathematical
sets; there is no inherent sequential meaning éontitation. The representation of a
sequential system is introduced by certain congestthat represent the state of a system
(or subsystem, such as an abstract data typedltbat us to write relations between a set
that represents the state of the system beforeparation is executed and a set that
represents the state of the system after an operalihe common convention for this is
to decorate the names of the after-states withglesiquote. Inputs to such an operation
are decorated with a question mark, and outputdecerated with an exclamation point.

The specification that follows uses the notationdiostract data types extensively.
An ADT'’s state is represented with a schema, anéibigs in other schemas may be
declared with the ADT’'s name as the type. Strigpeaking, the name of the ADT
represents the set of all possible states for th&,/and the declared variable represents
one state in that set, just as a variable declaseah integer represents one integer in the
set of all possible integers. (For more inform@atmn representing abstract data types
with Z notation, se@45][46].)

Operations on ADTs are named with the name of tié Afollowed by an
underscore and the name of the operation, and tmambiguous, underscores are only
used in schema names that represent operation®ds;ACamelCase is used otherwise.
When referred to in text, a schema’s name is alveaystalized. Because plain Z is not
object oriented, we simply use this naming conwento associate operations with the
structures they must operate on. We decided nos¢éoextensions that provide object
orientation because we do not need any advancagdsaf object orientation. Also, the
implementation cannot be object oriented as it nultghately be called from assembly
language by code emitted from a compiler; therefoseng an object oriented extension
to Z would widen the gap between the specificatiord implementation with little
benefit.

Pit supports exceptions, so we had to introduceravention for representing
exceptions. While the exact Pit syntax for repnéag exceptions is not discussed here,
the accompanying libraries must handle errors tjinaexceptions. To represent this, we
simply use an output parameter called “exceptiam!all the operational schemas. The
caller must check this output parameter after eopgration, and if this is set to “null”,
no exception occurred and execution continues ntymatherwise, the caller must
branch to the exception handler. The basic typ€ERXTION represents the possible
assignments for this output variable. The actugllémentation of exception handling is
more elegant, but because it is too low-level faresent here, this is a simple way to
represent the logic in the specification.



EXCEPTION ::= null | type_mismatch

7.4 Core structure

GLOBID is a basic type that uniquely identifies leacstance of the Glob ADT.
This simply represents a memory address. This sn#at variables declared with the
GLOBID type are pointers. We sometimes need tlisrwa variable needs to be shared
between several structures in a way that makesamge in all of them if it changes in
one of them. This works well because memory adéseseally just map integers to data;
we represent this here with partial functions magpiGLOBIDs to variables. In
summary, a GLOBID should simply be implemented psiater.

[GLOBID ]

Similarly, we use VALUEIDs to identify each instanof the Value ADT. Each
Value has a ref-count that lets us use a copy-g@wnplementation (explained later).
VALUEIDs should also be implemented as simple pamt

[ VALUEID ]

There are two minor things about the specificatiwat are slightly nonstandard.
First, some schemas are defined after they are usedid this because it is significantly
clearer to explain the schemas in the order theypaesented, and it has no impact on
their meaning. Second, unfortunately there istandard notation for comments within a
schema; we use a common convention usef4@h, though, which is right-justified
square brackets here above or to the right of whilsscribes.

The Glob schema is the central part of this speatifon. It describes a single
variable by encapsulating what the current typéhef variable is along with its value.
Glob is an abstract data type that representsasgiaicture pointed to by one or more
auto variables. It can represent an integer, iractstring, array, hash, reference, or
function-reference. Every auto variable is simpl¢LOBID stored on the stack. Every
Glob must have at least one reference on the staekdata segment, or in another auto
variable (when the GLOBID for a Glob is deleted @lob is freed).

Undef is a special value with a type distinct frath other types. Normally it
means that no value has been assigned to the harkali undef can also be explicitly
assigned, if desired, as a way to represent avallle. It is equal to itself and no other
value, so code can explicitly check for the undefue by comparison. In boolean
context, it always evaluates to false. Any othgeration on the undef value causes an
exception. (When dealing with strings, often Ceadll use the null-pointer as a distinct
value from the empty string. Undef is useful ie #ame way, however it is also useful in
more contexts than just string manipulation.) Tikia rather strange data type, because it
represents only one possible value; therefore, varable’'s type is undef, its value is
undef as well. When implemented, this means tpattarom the Glob, no memory
needs to be allocated for this value. A null-peirfor the value is sufficient to describe
undef. For the purposes of our specification, wiéngé UNDEF to be a basic type with
one possible value. The global variable undehisgs set to that value; this variable is
simply a notational convenience.



[ UNDEF |

| undef : UNDEF

Each Glob has a ref-count which, like in many oth&nguages, lets us
automatically figure out when to deallocate the liGloHere, the ref-count for a Glob
tracks the number of occurrences of its GLOBID. it confuse these with the ref-
counts associated with a Value, which track the memmof Globs referencing its
VALUEID. (There are two purposes for ref-counts track how many auto variables
reference a particular GLOBID and to track how mda®lpbs reference a particular
VALUEID.) For efficiency, multiple Globs can reféo the same Value. This allows us
to use copy-on-write logic; we pass auto variabksveen functions without copying the
Values unless the variables are modified. For @t@mconsider an auto variable
pointing to a Glob pointing to a Value that is gtgran array. When the variable is
passed as an input parameter to a function, a nel ®ith a unique GLOBID is
allocated and referenced by a new auto variabléhén parameter list of the called
function. The new Glob begins by pointing to tlaene Value as the Glob referenced by
the caller. Both Globs have a ref-count of one #edValue has a ref-count of two. If
the function modifies the array, the Value is cdpieto a new Value, and the second
Glob is modified to point to the new Value, whileetref-count of the old Value is
decremented to one. Both Globs still have a refit@f one, both Values now have a
ref-count of one, and the structures are now indeéget of each other. If the called
function does not modify the array, the Value iserecopied and the ref-count of the
Value is simply decremented when the function retursaving an expensive copy
operation. (When modifying a Value, if more memgynot needed, it should only be
copied if its ref-count is greater than one; othsewit should be modified in-place for
efficiency.) The same logic applies to assignméithen one auto variable is assigned to
another, a new Glob is allocated, but the Valueeissed until either of the variables is
modified. The same logic also applies to elemstised in the example array, not just
the array itself, and so we can casually pass laggaplex data structures between
functions without an expensive copy operation ekegpen the structure is modified.
Even when the structure is modified, usually ordyt f it needs to be copied. This has
the surprising effect that code that uses autoalsées to store arrays and hashes may
perform substantially faster than code that usesifiwve strings, arrays, and structs,
depending on how the variables are used (unlesswfe, similar copy-on-write logic is
reimplemented manually).

In the Glob schema, the value can be any singleeviilbm several possible sets.
As this is the core of the specification, we’ll ahef it first to give the reader a context for
understanding the schemas that follow. This schepeesents a structure in memory
that represents a reference count and a valueiceNibiat here we say the value element
in a Glob can be undef, another GLOBID, or a VALDEIUndef is represented directly
in the glob, as it requires no additional inforroati One way to implement this,
assuming Glob is a struct and value is a pointér, imould be to set the value element to
null to represent undef. A Glob that referencestfaer Glob is also directly represented
here, rather than as a Value, because again wesiogly use the same pointer for



referencing a Glob or a Value, and allocating acstire inbetween would just be a waste
of memory and CPU time. It is necessary to stomatwhe type of the value is to
differentiate between the different types that banstored in Value and a pointer to a
Glob. However, exactly how and where to storetipe is not important here; in the
specification, we differentiate by checking whigt the value is in.

_Glob
refcount :N
value : UNDEFU GLOBID u VALUEID
[ VALUEID is explained later ]

For convenience in our specification, we’ll exgligitrack all the Globs using a
partial function to map GLOBIDs to Globs. An exaistructure for this is not necessary
during implementation, as the actual memory addse#&es to uniquely identify a Glob,
but here we must use a GLOBID to clarify whetheo @iobs with the same value are
distinct, or whether they are the same Glob witb teferences. For the specification, we
also need this to represent operations to createdastroy Globs. Free Globs always
have a refcount of zero and a value of undef. ddmeain of free_globs represents all the
possible return values for the memory allocator.

__AllGlobs
allocated_globs : GLOBIB~ Glob
free_globs : GLOBID-+ Glob

dom allocated_globs dom free_globs & [ No overlap |
dom allocated_globs dom free_globs = GLOBID[ All are represented |
Vv x : ran allocated_globsx.refcount > 0

Vv x : ran free_globsx.refcount = Ox x.value = undef

The initial state of the system has no allocatembgl Notice that this one
initialization schema implies the initial state thie other schemas that follow, such as
AllAutos.

__AllGlobs_Init
AllGlobs

dom allocated_globs & [ Implies all are in free_globs ]




AllAutos is a container representing all the audniables. This includes both the
auto variables created by the runtime environmentede emitted by the compiler when
translating the program and auto variables defimg@perations in the schemas in this
specification, such as the reference operator &ohge in arrays and hashes. For
example, if an auto variable is storing a referetacan auto variable, the GLOBID for
both the reference and the referent are includeébddarbag called autos. When a function
is entered or exited, the code emitted by the clanpnserts code to update this by
caling either $lang.auto.new.undef (represented bAdlAutos_Create) or
$lang.auto.refcount_inc (represented by Auto_IncBafit), depending on whether it's a
new variable or an alias to an existing variabte] $lang.auto.refcount_dec (represented
by Auto_DecRefcount). It is up to the compileradd and subtract the references it
creates from the refcounts by calling these fumstidhis is outside the scope of this
specification because it depends heavily on thetagynof the language.
$lang.auto.refcount_dec will never be called withaucorresponding previous call to
$lang.auto.refcount_inc; the compiler guaranteeis. th (The reverse is possible;
$lang.auto.refcount_inc can be called without a responding call to
$lang.auto.refcount_dec if, for example, there isfuaction that loops infinitely,
preventing the second call from ever executingis ©§not a concern.)

__AllAutos
AllGlobs
autos : bag GLOBID

[ This means a Glob’s refcount must match ]
[ the number of occurances of it in the bag. ]
Vv x : dom autos autos# x = allocated_globs(x).refcount
[ This means a Glob that’s a reference to a |
[ Glob must put that reference in the bag. ]
Vv x : {x : ran allocated_globs | x.valeeGLOBID } . x.valuee autos

When a new Glob is created, its ref-count alwaggstat one and its initial value

is always undef. We represent creating Globs asparation on All_Globs that returns a
Glob.



__AllAutos_Create
AAllAutos [ This operation corresponds to $lang.amtev.undef |
glob_id!: GLOBID

glob_id!e dom free_globs
allocated_globs’ = allocated_globs
{ glob_id! — ( refcount— 1, value— undef) }
[ This implicitly adds glob_id to the ]
[ autos bag once because refcountis 1. |
dom free_globs’ = dom free_globglob_id!

AllAutos_IncRefcount and AllAutos_DecRefcount ingitly update the ref-count
on the corresponding Glob, as described by AllAatod AllGlobs.

__AllAutos_IncRefcount
AAllAutos [ This operation corresponds to $lang.awfzount_inc ]
glob_id? : GLOBID

autos’ = autos [ glob_id?]

Notice AllAutos_DecRefcount is a very loaded operat When it is called, if
there are no more occurrences of the glob_id, plioitly moves the Glob from
allocated_globs to free_globs, again because ofdhstraints in AllAutos and AllGlobs.
This, in turn, implicitly sets the value to undef.

__AllAutos_DecRefcount

AAllAutos [ This operation corresponds to $lang.awfzount_dec ]
glob_id? : GLOBID

autos’ = autos fglob_id?] [ Missing symbol for bag-difference. ]

7.5 Structure of encapsulated values

The above schemas define our core memory struatuddnow to track ref-counts.
Now we define the various things that can be storexh auto variable. In the interest of
efficiency, we have already defined undef and arezfce to another Glob as possible
values represented without the infrastructure beldw the implementation, it may be
desirable to represent other common cases (sudhteggers that are no larger than a
pointer) directly in the Glob rather than in the@aeate allocations below; however if this



is done, the cases must not require the Glob teesiged, because that will sometimes
require the Glob to be moved to a new location emmary, which will break references

to it. In short, the Glob’s address must not mafter it is allocated, so any dynamically
sized parts of a variable must be stored separagéhyg the infrastructure below. This is
the main reason that values are not stored directBlobs.

First, we need an ADT to hold the ref-count. We asseparate schema for this
because the ref-count is always there regardlesehmh type of value is assigned. A
suggested implementation is define a struct fohagge of value, all of which store the
ref-count as the first element. Then when thecoefnt is needed, it can be easily
accessed without regard for which struct definitibis is. To minimize the number of
calls to the memory allocator, all the informatfon a Value should be stored in the same
chunk of memory, if possible (hashes are probdigyoinly exception to this).

_ Value
refcount :N
value : Integew Fractionu Stringu Array u Hashu Fref

AllValues is quite similar to AllGlobs; it gives wsway of tracking which Values
are unique and it enforces ref-counts. The lagt gfathe predicate in AllValues looks
obtuse, but it is just expressing what we alreadyitively know ref-counts of values to
be. It is saying that the ref-count of a Valualways equal to the number of Globs that
refer to its VALUEID.

__Allvalues
AllGlobs
allocated_values : VALUEID~ Value
free values : VALUEID— Value

dom allocated_values dom free_values &

dom allocated_values dom free_values = VALUEID

Vv x : ran allocated_valuesc.refcount > 0

Vv X : ran free_valuesx.refcount = 0

Vv v : dom allocated_valuesllocated_values(v).refcount =
#{ g : dom allocated_globs | allocated_globs(g).eatw }

Finally, after much infrastructure, we define thrusture of each possible type.
These should mostly be fairly obvious; all the idifft parts are expressed above.
Integers and fractions are particularly easy pdggis. Notice that there is no bound on
integers or on the numerator or denominator foctibas. This means that if an
operation’s result cannot be stored in the amodimh@emory available, more must be
allocated.



_Integer

value :Z

_ Fraction
num :Z
denom N [ The denominator must be positive. ]
denom >0
num = 0= denom =1 [ Avoid dividing by zero. |

[ This says fractions must be stored in reduceoh f¢

num > 0= -3 X :N. (X >1)A (num/ xe N) A (denom / xe N)

A String is a homogenous sequence of integersprifAitive “string” can be any
homogeneous sequence, like what C calls an ariye only purpose of supporting
“string” separately from “array” in the context @uto variables is to provide an
acceptably efficient way to represent sequencemtefiers. Allowing an unrestricted
subtype here would require so much complexity iuldodefeat this purpose.) While
usually the integers will be unsigned and 8 bitdayithe implementation must support
both signed and unsigned at any size. Any widtimtafger is valid; even strange widths
such as 13-bits must be supported. Also, whilewtiigths of elements in a single string
must be constant, the widths of elements may Werdiit widths for different strings in
the same program. During storage, the sizes maycbeased. For example, a string of
13-bit integers may be represented internally uslfigbit integers for efficiency.
However, there must be no way for outside codeetbthe difference between an
implementation that uses true 13-bit integers amdnglementation that uses integers
padded to 16 bits. When deciding whether to usielipg, the tradeoffs between the cost
of conversions and the inefficiency of unalignetgers must be carefully weighed.



__String
width : N

value : sedN
signed : boolean

width > 0
if signed then

V char : value -2V -1 <= char < #dh-1
else

V char : value 0 <= char < ¥4

An Array is a sequence of auto variables, allowingp be heterogeneous. The
contained auto variables may contain any valid tgpelata, including, for example,
another Array.

__Array
value : seq GLOBID

[ This means all elements in the Array must |
[ must increment the reference count (through |
[ the autos bag). ]
Vv x : value. X € autos

A Hash can be thought of as a dynamic representafia primitive struct. More
precisely, it is a mapping of keys (a domain ofque strings, colloquially known as
keys) to values (a range). It has all the propertif a partial function: each key must be
unique, but a value can occur many times. It &lao all the desirable properties of a
hash table: finding or deleting a key is an O(pgration, and inserting a key is an
O(log(n)) operation (incurring the log(n) cost besa sometimes the table must be
extended, which requires reorganizing all the keyagditionally, however, our Hash
object remembers the order in which the keys weseried (unless the order is explicitly
modified), so iterating through the keys alwayddsethe same order of elements. This
may be implemented trivially by forming a two-waiyKed list out of the keys, in
addition to inserting the keys into the hash tablédere is no cost for this in terms of
time-complexity (and only an irrelevant fixed césteach write operation to maintain a
couple of extra pointers), yet it adds much expvesgalue to the data structure. It also
makes Hashes capable of everything a primitivecstisicapable of. To achieve this
efficiency, it must be a single hybrid data struefunot two separate structures, but in our
specification, we represent the ordering of theskesparately from the partial function.



—Hash
value : String- GLOBID
order : seq String

[ This means all elements in the Hash must ]
[ must maintain the reference count (through ]
[ the autos bag). ]
V X : ran value x € autos
dom value = ran order [ Value and order describesime set. |

It would be infeasible to support auto referenceslitthe various combinations of
types that a pointer can reference. However, stipgoreferences to auto variables is
necessary to support complex data structures, appogting references to functions is
necessary to support abstract data types. (Fudiseussion of the implementation of
abstract data types is beyond the scope of thtsissson.)

In Pit's terminology, a pointer is just like C’s ipters, which are a primitive
integer storing a memory address with an optiotetlcssub-type property that allows it
to be dereferenced. Pointer arithmetic and comwesdo and from integers are allowed.
Pointers cannot reference auto variables. An aat@ble cannot store a pointer, except
by interpreting it as an integer when stored araiging a typecast when fetched. A
reference is an auto variable that refers to amath® variable; it is a type that can only
be stored in an auto variable, and it can onlyrrefeauto variables. References do not
allow arithmetic or conversions to and from integeReferences are strong, meaning
that they increment the reference count of thereetethus preventing garbage collection
for the duration of the reference.

Because a reference is just a pointer in the coofean auto variable with certain
restrictions, we do not need to allocate an addhistructure for it, and formally we
have no additional schemas to represent it. Asriesl above in the Glob schema, the
value element of a Glob can simply store a GLOBIRally.

Fref means “function reference”. These functioferences are restricted to
functions with a certain prototype by the compileo, we don’t have to represent the
prototype dynamically.

[ FUNCTIONID ]

_ Fref
value : FUNCTIONID

7.6 Operations

These schemas represent the various operationsdhabe performed on auto
variables. It is worth clarifying the context diese operations. Remember, we're trying



to represent the semantics of operations on autables as written in Pit. A schema that
represents an operation, for example, Auto_Addatese a new structure to hold the
return value of the operation. For example, thgeasentation of “$a = $b + $c - $d” is,
informally, three operations, each requiring a elaxhold the return value:

AllAutos_Create(glob_id& $temp1l)

Auto_Add(left— $b, right— $c, result—> $temp1l)
AllAutos_Create(glob_idb $temp?2)
Auto_Subtract(left> $templ, right> $d, resuli> $temp2)
AllAutos_DecRefcount(glob_ie> $temp1l)
AllAutos_Create(glob_idt $temp3)

Auto_Assign(left— $a, right— $temp2, resukt> $temp3)
AllAutos_DecRefcount(glob_ieb $temp?2)
AllAutos_DecRefcount(glob_ies $temp3)

Obviously, substituting $a for $temp2 and elimingti $temp3 and the
Auto_Assign operation, would be more efficient, ugt are interested in the general case,
not optimized cases, at this point, and in the ggnmse, every operation has a return
value. There are several oversights and syntactiblems in the example above, but
we’ll ignore these for the moment; they are neagsaa we map the informal description
to the formal specification because for the momeatare not interested in a formal
specification of the language’s syntax. The retuatue of the last operation in a
statement gets its ref-count decremented or islfree

Clearly, most of the binary operators will be ngadentical in their specification.
They are so similar and there are so many, it wbel@onfusing and a waste of time to
specify all of them. We will specify only one op#&on for each set of operations that are
almost identical. For example, subtract, multigide, modulus, as well as bit-wise
operations (or, nor, and, nand, xor, nxor, shiftiage omitted. Assignment is quite
different, as explained below, so this one is notited. Unary operators differ
substantially from binary operators, so we incladgation.



__Auto_Add
AAllAutos
left? : GLOBID
right? : GLOBID
result? : GLOBID
exception! : EXCEPTION

if

Integer_Add(
left? — allocated_globs(left?).value
right? — allocated_globs(right?).value
result?— allocated_globs’(result?).value

) v Fraction_Add(
left? — allocated_globs(left?).value
right? — allocated_globs(right?).value
result?— allocated_globs’(result?).value

)
then exception! = null
else exception! = type_mismatch [ result is uncleang
__Integer_Add
left? : Integer

right? : Integer
result! : Integer

result!.value = left?.value + right?.value

_ Fraction_Add
left? : Integer
right? : Integer
result! : Integer

result!.num / resultl.denom =
left?.num / left?.denom + right?.num / right?.denom

Auto_Assign is another loaded operation, becauseghwhere the ref-counts of
Values come into play. In the statement “$a = $bg actual value is not copied. As
described above, to accomplish this, Value had-aount that is distinct from Glob’s



ref-count. For example, assume the ref-counthefGlobs for $a and $b start at one;
these do not change. The sequential logic of $segament is as follows:

Decrement the ref-count on the previous Value ofaba free it if zero).
Increment the ref-count of the Value for $b twice.

Point the Glob for $a at the Value for $b.

Point the result Glob at the same Value.

After this, $a and $b still have the same disti@tibs, but these Globs point to

the same Value. If, for example, $b is incremer&er with the statement “$b += 17,
the link is broken. A new Value for $b is creatadd the Glob for $b is pointed at it.
The old Value’s ref-count is decremented, but meed because $a still points to it.
Notice that this is not the behavior expected feoneference; if $a were a reference to $b,
for example through the statement “$a = $b<-", nitfecount for the Value of $b would
be unaffected. In this case, the Glob for $a starpointer to the Glob for $b. This time,
the ref-count for the Glob for $b, rather than\fglue, is incremented. Afterwards, $a
and $b still have distinct Globs, but the Glob$arpoints to the one for $b.

__Auto_Assign

AAllAutos

left? : GLOBID

right? : GLOBID

result? : GLOBID
exception! : EXCEPTION

[ Implicitly increments refcount of new value ]
[ and decrements refcount of previous value. |
allocated_globs’(left?).value = allocated_globd{t®).value
[ Implicitly increments refcount of new value. |
allocated_globs’(result?).value = allocated_glabk(f).value
exception! = null

The reference operator in the above example “$ab<-"$is represented by

Auto_Ref; it is relatively straight-forward.



__Auto_Ref
AAllAutos
in? : GLOBID
result? : GLOBID
exception! : EXCEPTION

[ Implicitly increments refcount of the Glob far.i]
allocated_globs’(result?).value = in?
exception! = null

Negation is a fairly simple case. Bitwise-not early identical to negation, so it
is omitted.

__Auto_Negate
AAllAutos
in? : GLOBID
result? : GLOBID
exception! : EXCEPTION

Integer_Negate(
in? — allocated_globs(in?).value
result!— allocated_globs’(result?).value
) v Fraction_Negate(
in? — allocated_globs(in?).value
result!— allocated_globs’(result?).value

)
then exception! = null
else exception! = type_mismatch [ result is uncleang

__Integer_Negate
in? : Integer
result! : Integer

result!.ref-count = 1
result!.value = - in.value




__Fraction_Negate
in? : Integer
result! : Integer

result!.num / resultl.denom = (- in?.num / in?.d@&)o

7.7 Conclusions on Z specification

Syntax and semantics are central to any programfaimguage. When developing
a programming language such as Pit, it is quitefhklto specify these constraints
formally because creating a compiler is diffic@ten with a clear understanding of the
language. The design of a language can benefit thmrmapplication of formal methods
by enhancing understanding and communication betwebBaborating developéfd. A
formal specification also provides a context in evhtorrectness, an important property
of a compiler, can be formally analyzed. Additittyiait helps make the language’s
description more precise and unambiguous, makiegster for a user to learn. It is also
necessary to carefully analyze important aspecthetanguage during the early stages
of development to help avoid inconsistencies. T¥as the main objective of this effort,
and it was successfully achieved using Z notéffon Along with these advantages, Z
notation was effective in representing the autialde type.

8 Future work

The first work to do next is to write a Pit compilen Pit. This will both
demonstrate that Pit can be self-hosting and in@mvthe current compiler, which has
an overly simple design with no optimizationswés written for a single purpose, which
is to bootstrap the compiler written in Pit.

Then the compiler needs some optimization. Moghefoptimization techniques
used by C compilers should be useful in Pit. Thare additional Pit-specific
optimizations. For example, a primitive variabl@ncoften be substituted for an auto
variable as described above. When work on optitieizas complete, it is reasonable to
expect Pit programs that use only primitive vargahio match the speed of equivalent C
programs. Pit programs will always be faster tleguivalent Perl programs because
when a program written in Perl executes, Perl fasinpiles it into byte-code, then
executes it in a virtual machine. Pit programd execute significantly faster, even if
they only use auto variables, because the codeeiady compiled at run-time and does
not require a virtual machine. This places thegoerance of Pit programs, at worst,
somewhere close to C programs and better tharpRegtams.

Next, there needs to be some study of the differencspeed between primitive
and auto variables, specifically to determine hdaghhthe performance penalty is for
using auto variables. This will provide insightdnwhen it's appropriate to use primitive
or auto variables when weighing the trade-off @ragram’s performance. Some rough
study on this could be done today on toy examplesiulating the logic for auto
variables in C. The examples would be lengthy,omvenient, and somewhat
inconclusive, but with care they could serve thgppse of giving a rough estimate of the
difference in speed between the types of variables.



A later useful branch of work may be to create mgiter that translates Pit code
into a byte-code that is suitable for a virtual fmae. Like Java, this would allow
programs to be portable between CPU architectliresspossible to do this in a way that
allows many programs to be compiled natively or foe virtual machine without
modification, except programs that use inline asggmode.

Another possible branch of work may be adaptingtexg research on checking
C code for security bugs. While this is obviated éode that exclusively uses auto
variables, this research may still be useful toimire security risks in code that uses
primitive variables.

9 Appendix: Grammar

9.1 Convention

This specification uses BNF, Perl Compatible Regkbgpressions (PCRE), and
several trivial augmentations to BNF as follows:

e <> surrounds rule names. When empty, representsutheule.
* ""means literal

* [] means optional (O or 1 occurrence)

* () means grouping

¢ means 0 or more occurrences

* + means 1 or more occurrences

* // means comment

9.2 Token separation

The compiler uses PCREs to tokenize the input Tike first capture buffer ($1)
captures a token, and the second ($2) captures-spitce. If the expression doesn’t
match, the compiler tries the next expression.llifal, the compiler reports a syntax
error and aborts. If an expression captures onlyenwgpace, matching restarts after the
white-space with the first regular expression. ifexpression captures only a token, it
passes the token to the parser, then again restatthing after the token with the first
regular expression. No regular expression matcb#s @& token and white-space. (These
are copied directly from the compiler’s source oaligh syntactical decoration removed.
Assume the s flag to anchor ~ only at the beginwihg string containing newlines.)

/I Single-quoted strings
(™0

/I Double-quoted strings may contain \"

“CEWIWD0

/I Single-line comments (treated like white-space)

“OUMnr)

/I Multi-line comments (treated like white-space)
"0 )



/I White-space
“O( \r\n]+)

/I Bare-words and numbers
“([A-Za-z0-9\.\_]+)()

I Single special character tokens

"DONRN@WAS](

/I Multi special character tokens
"N NINNNAA=\HWA\SW?]4) ()

The above identifies boundaries between tokensjdesgn’t identify any meaning
for the tokens. First, consider individual tokeHgre the specification again uses PCREs
for conciseness, but after this section it is ret&id to BNF.

<number> ::= <integer> | <float>

<integer> ::= "[0-9]+$
| "[A-Z0-9]_[A-Z0-9]+$

<float> ::= “([1-9A-Z] )?[0-9A-Z]+
(\.[0-9A-Z]+)?(e[0-9A-Z]+)?$

Note that the rules above allow a preceding digid anderscore. This is the
notation for expressing a base besides decimal.b&sg between 2 and 36 is acceptable.
The base is identified by placing the highest digit that base before the underscore.
Here are some examples of <number>:

* Adecimal integer: 3735928559

* Another decimal notation: 9 3735928559

* Binary for 3735928559: 1 _1101111010101101101111101111
» Hexadecimal for 3735928559: F_DEADBEEF

* Base-36 for 3735928559: Z 1PS9WXB

* A decimal float: 32.5

* Another decimal notation: 9_32.5

* Binary for 32.5: 1_100000.1

» Hexadecimal equivalent to 32.5: F_20.8

» Base-36 equivalent to 32.5: Z_W.I

<quoted-string> ::= "["]*$
[ O WD*$

Single-quotes do not allow special encodings, si8 gimpler to use them for
strings with literal back-slashes, but it is impbEsexpress single-quotes within a string
identified by single-quotes. Double-quotes allowlksalash encodings such as \" \\ \n etc.
Encoding is the only difference between the quotypgs. The compiler is 8-bit clean, so
a UTF-8 string may appear in quotes with no spestipport.

<bare-word> ::= "[A-Za-z0-9_.]+$

<symbol> ::= "$" <bare-word>



<symbol> is any entry in the symbol table (any able or function) defined by
source code. Note that the leading $ obviates e rfor reserved symbol names.
Language keywords and numbers such as 32, F_2@nd, asm are distinct from
variables and functions named $32, $F_20, $if, gasin. This allows future versions of
the language to include new keywords without bnegkild code, which is a problem that
C suffers from frequently. While this means theme @o reserved symbol names, names
should not begin with an underline because theselbeaised internally by the compiler
tools. For example, the symbol “ GLOBAL _OFFSET_TAB” is used on many
platforms for dynamic linking.

<type-def> ::= "@" <bare-word>

<type-def> is any name defined by source codefar te a particular data type.
Terminologically, a <symbol> has an associated edgppression> (which can be a
<type-def>), and a <type-def> is a short-hand nfoma <type-expression>. Admittedly,
both are tracked in the compiler’'s symbol table e specification can be somewhat
confusing distinction if unexplained. <symbol>s a&giables and functions. <type-def>s
are user-defined types for <symbol>s. As with sylmbmames beginning with an
underline should be avoided.

<jump-label> ::= "#" <bare-word>

A jump-label is any name defined by source codeefer to an entry point for
execution. These are used for exception handlingfanarbitrary jumps. (Pit uses the
keyword “jump” instead of “goto” for consistency twiassembly language.) The scope
of a jump-label is limited to the function it isfdeed in. These use # instead of $. These
labels may be used in expressions to representnaorgeaddress of executable code,
which is useful for in-line assembly code. Agaimnres beginning with an underline
should be avoided. The compiler will almost alwaged to define jump labels for flow
control constructs; these are always named withraierline prefix so they don’t conflict
with user-defined jump-labels. Unlike GCC, userhtied jump-labels are not renamed
because inline assembler code may need to refetieace

9.3 Modules and statements

<module> ::= <import-statement>* <statement>*

An entire source file is a <module>. <import-stagei»s must come before other
<statement>s.

<import-statement> ::= "import" <bare-word>";"

<import-statement>s simply reference other libsri®ots in library names form
a hierarchical naming convention correspondingamespaces and subdirectories in the
library search path.

<statement> ::= <namespace-statement>
| <asm-statement>
| <conditional-statement>



| <loop-statement>

| <exception-statement>

| <declaration-statement>
| <expression>";"

| "return™ ;"

<statement-block> ::= <statement>
| "{" <statement>* "}"

<namespace-statement> ::= "namespace" ":" <statemen t-block>
| "namespace" <bare-word> ":" <statement-block>

A namespace may be anonymous (without a name). yinous namespaces
have little effect except that the private symholshem may only be accessed by other
symbols within the anonymous namespace. Visibditpublic symbols is unaffected by
an anonymous namespace. A named namespace hasnbefect on private symbols,
plus the effect that contained public symbols dtepeefixed with the name of the
namespace and a dot.

<asm-statement> isn’t defined yet. It will repressyntax for specifying in-line
assembler code.

<conditional-statement> ::= (“if" | "unless") "(*
<expression>")" <statement-block> ["else"
<statement-block>]

<loop-statement> ::= "loop" [<bare-word>] ":"
<statement-block> ["iterate" <statement-block>]
| "again" ;"

| "next"
| "break" ";"

<exception-statement> ::= "try" "#" <bare-word>
<statement-block>

| "throw" <expression>";"

| "label" "#" <bare-word>";"

| "jump" <expression>";"
<declaration-statement> ::=

<visibility> <type-expression> <type-def> ";"

| <visibility> <type-expression> <symbol> ";"

| <visibility> <type-expression> <symbol> "prototyp e"""

| <visibility> <type-expression> <symbol> "alias" " =""g"
<bare-word>";"

| <visibility> <type-expression> <symbol> "=" <init ializer>
<visibility> ::= "public"

| "private”

<declaration-statement>s define both variables &ntttions. Functions are
declared using initializer syntax, since functi@re just constant symbols that contain
executable code. Functions are generally a binodragma to syntax, although they are
less so in Pit than in most other languages. Famgke, the sizeof operator does not
know how to figure out their size; they are alwagsstant data; the function initializer
can only be used in a declaration-statement, nahigeneric expression; etc.

9.4 Type-expressions

<type-expression> ::= <type-expression-bracket>

| <type-expression-bare>

<type-expression-bracket> ::= "[" <type-expression- bare>"]"
<type-expression-bare> ::= <type-qualifier>*

<type-expression2> <type-expression3>

<type-qualifier> ::= "signed"

| "unsigned"”

| "const”



"unconst"

"volatile"

"unvolatile”

"stateless"

"unstateless"

<type-expression2> ::= "auto"

"char"

"int" ["(" <integer>")"]

"ptr ['(" <type-expression> ")"]

"float" ['(" <integer>")"]

"string" "(" <type-expression> ["," <integer>] ")
"struct" "(" (<type-expression> <quoted-string> " )+
"function” "(" (("in" | "out" | "inout") <type-ex pression>
"$" <bare-word>",")* )"

| "@" <bare-word> // user-defined type

| “$" <bare-word> // type of another symbol
<type-expression3> ::= <>

| "->" <type-expression3>

| "<-" <type-expression3>

| (" ")" <type-expression3>

| "(" <quoted-string> ")" <type-expression3>

| "(" <symbol>")" <type-expression3>

Type-expressions are used for declaring and prpitogysymbols, type-casting,
within other type-expressions, and the sizeof dperélote that two of the alternatives in
<type-expression3> allow referencing the type otlment in a struct or a parameter to
a function. Square brackets are used exclusivelydémtify a type-expression. For
example, a type-cast converting $foo to a 128rtéger would look like this:

$foo[int(128)]

In certain cases where the syntax requires a typeession, the square brackets
are required (<type-expression-bracket> is usethse). Specifically, they are required
by type-casts and the sizeof operator; they areregtired by declaring/prototyping
symbols or within other type-expressions.

9.5 Expressions

<expression> ::= <value> [<binary-op> <expression>]

<value> ::= <unary-op> <value>

| <value> <postfix-unary-op>

| "sizeof" <type-expression-bracket>

| (" <expression>")"

| "(" "if* <expression> "then" <expression> "else"
<expression>")"

| <symbol>

| "error_id"

| "line_number"

| <number>

| <quoted-string>

| <jump-label>

| ["array" | hash ] "{" (<immediate> ";")* "}"
<unary-op> :;="-"|""|"

<binary-op> :: -= =" =
| IS et | = = | |
|"&="|“"&-"|"<<_"|">>_ | " | R | "

[ "L | | ] e ] [

[ T R | & | e | "> | Mor "] "nor"
| "xor" | "nxor" | "and" | "nand" | "<" | "<=" | =" ="
| ">="|">" | "<=>" | "min” | "max” | "+" | "-" | |
O N R B A L B O B B B
| "&" &N | <t ] S>>

<post

postfix-unary-op> ::= "->" // dereference operator



| "<-" I reference operator
| <type-expression-bracket> // typecast
| "(" <expression>")" /| element of a string

| "(" <quoted-string>")" // element of a for struc t
| "(" (<expression>",")* )" /] function call
9.6 Notes

The grammar is mostly presented in an order thatimmzes the number of
unexplained rules at each point as read from tdpttom. For example, before defining
<expression> and referencing many new undefineglsyihe grammar ties off all the
other loose ends.

One minor but intriguing invention is the syntax faumbers in bases besides
decimal. This allows easy representation of ang hgsto 36, and avoids the confusion
caused by the common convention of using a learing to designate octal.

At the moment, for-loop syntax is not included. fhés some debate over the
best syntax for this. Rather than regretting a decdsion later, this matter is unfinished
for the time being. Meanwhile, the <loop-statemesimtax allows a clause called
“iterate” that mostly covers what for loops can do.

As presented, the grammar appears to support fumalieclarations within
functions, however the compiler does not implentkist Also, there are restrictions as to
which alternatives for <statement> are alloweddasa function and which are allowed
outside a function. This reflects how the proofeoficept compiler is implemented; code
generation, not parsing, enforces these restrigtion

Some details in this grammar still need attentlumyever there is a functioning
compiler that translates the grammar as presergeglihto i386 assembly language with
support for auto variables.
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