A Formal Specification of a Programming LanguagesiDn of Pit

Leif Pedersen <bilbo@hobbiton.org>

Hassan Reza <reza@cs.und.edu>

University of North Dakota
Department of Computer Science
Streibel Hall Room 201
3950 Campus Road Stop 9015

Grand Forks, ND 58202-9015 USA

1 Abstract

Formal specifications and supporting tools arectiffe at improving the quality
and correctness of a software system. A languagsually simple once understood, but
communicating this understanding to another personbe difficult, perhaps because a
new language often represents a new paradigm. ddnsmunication is particularly
important when developing a new language; the clempnd other tools are still under
development, so learning by doing isn’t always gmesand yet to correctly implement
the compiler, a solid understanding of the languageecessary. We use Z notation to
formally specify part of Pit, which is a generalpose programming language that we
are currently developing. The main idea behindiftio create a language where the
programmer can choose between allocating memoryatignby using statically-typed
“primitive” variables or allowing the compiler tansert memory management code
automatically by using dynamically-typed “auto” isdoles. This feature, in turn, allows
a programmer to choose between automatically ergstiat there are no buffer overrun
or integer overflow vulnerabilities in the codenfdrmation about Pit is available at
http://pit.devpit.org/.

2 Introduction

There are a number of motivations for applying d-established formal method,
any of which is considered a viable alternativeusoh to the informal and ad hoc
practice of software desitfh The application of a formal method to specifyaaguage
helps prevent ambiguity, inconsistency, and incatguless.

A compiler is a large and complex piece of softwatdranslates a program
written in one language such as Pit into a prograanother language such as assembly
code, machine code, or perhaps C. One of the nigiracteristics of any compiler is to
preserve the semantics of the program being codiil@herefore, developing correct
compilers that can generate faithful target cod@out introducing any errors is critically
important. We present a Z specificatfl to formally specify part of Pit! to help us
design this part of the language before we begirkwo

Pit is a general-purpose programming languagevileaare currently developing.
The goal is to create a language where the progeancan choose between allocating
memory manually by using statically-typed “priméiv variables or alternatively
allowing the compiler to insert memory managemeotlec automatically by using
dynamically-typed “auto” variables. This allowsetlprogrammer to choose between
automatically ensuring that there are no buffemaweor integer overflow vulnerabilities

in the code at the cost of efficiency and writingre efficient code at the cost of
maintainability and more opportunities for bugsheTnnovation is that because the same
language supports both, the programmer can choosete code both ways in the same
function, rather than choosing between one or therdfor the entire module. This is
useful for areas besides security; for example,agisng a data structure using automatic
memory allocation is also much easier.

The core language and primitive variables are amtd C, and the auto variables
are similar in many respects to variables impleeiy scripting languages such as Perl
or Python. Primitive variables are simply the siesl variable types provided by C:
integer, float, string, struct, and function, pltrévial variations such as characters,
pointers, signed or unsigned integers, etc, widniidal semantics. Auto variables are
implemented syntactically as another type of vdeiabWhat this means is rather than
specifying that a variable is an int, float, etwe tauto” keyword is simply used instead.
Semantically, auto represents a meta-type, indigathat the type of the variable is
dynamic and determined automatically during ruretiloy the value assigned to it.
Memory for auto variables is allocated and freetbmatically. The types that can be
stored in an auto variable are integer, floatngtriarray, hash (instead of struct), and
reference (instead of pointer). (In Pit, “strings® homogeneous sequences and “arrays”
are heterogeneous sequences.) Automatic memorggearent includes the subvalues
stored in auto variables, such as elements in @remyd hashes, and referents of
references. The compiler implements auto varialegsanslating every operation on an
auto variable into a function call to a supportiibgary. Pit is self-hosting, in the sense
that the compiler tools and supporting librariestfee language could all be written in Pit
with no tools written in other languages. Thipassible because primitive variables are
used to construct the infrastructure required bip aariables and because no virtual
machine is used.

While the semantics for primitive variables in Rite easily described by
comparing to C variables, the semantics for autagakbes require some explanation.
Conversationally, it is convenient to say that teyk similarly to variables in Perl or
Python, but this is informal and somewhat inacaut best. Intuitively, it is a good
starting point, but to describe exactly what theg, ave wrote a formal description of
exactly what an auto variable is. To that end,use Z notation to describe how they
behave and, to some extent, how they are implemente

3 Related work

The formal specification of a programming langddfe covers syntax and
semantics, which are the main constraints of anguage. The construction of a program
is described by the syntactical constraints ofléinguage. The syntax is typically defined
through a grammar that describes the rules acaprtbnwhich programs must be
composed.

Our work is related to the work by Gray ef’8f'. In [9], they used MetaPRL
formal programming environment to write a compledenpiler for ML-like language. In
[10], the authors used formal methods to specify progreg languages; their main
focus is on the reusability of formal specificasom specifying the programming
languages.

Programming languages which have been designedoweélof the various formal
methods have better syntax and semantics, fewapéros and are easier to learn. But
despite the obvious advantages, attribute gramnaaismatic semantics, operational
semantics, denotational semantics or any of theratiost widely used formal methods
for programming language description have not ghipepularity and general U39,
One reason might be that semantics is much mofieutifto describe than syntax and
semantic descriptions are not easy to read. Owttier hand, a more compelling reason
might be that they lack modularity, extensibilitpydareusability. Though we are not
addressing any of these issues in our study, wee laeated a formal semantic
specification for part of Pit.

4 Examples of Pit syntax and translation to assembly

If auto variables could only store simple valueschs as integers, floats, and
references, they would obviously not be particylawseful. Their power becomes
apparent when they are compounded to create a emnuata structure. Creating a
complex data structure using auto variables isaltivio do so, simply assign an array or
hash to an element of an array or hash, as follows.

1. ..

2. private auto $root; // Declare $root as a local v ariable

3. S$root =array{}; // Assign an empty array to i t

4. $root(0) = hash{}; // Assign an empty hash to th e zeroth element
5. $root(0)("key0") = "array element 0, hash element k ey0";

6. $root(0)("keyl") = "array element O, hash element k eyl";

7. $root(1) = hash{};

8. $root(1)("key0") = "array element 1, hash element k ey0";

9. $root(1)("keyl") = "array element 1, hash element k eyl";

10. ..

Notice how concise this code is because there isgsal to explicitly tell the
compiler how much memory to allocate for the aromyhash tables, when to free the
memory, or what the type of each value is. On #pee create an array and assign it to
$root, which dynamically assumes the array typde memory for the array is initially
allocated with a size of zero, and later it is aged as necessary. On lines 3 and 6, we
create hashes and assign them to elements of tag &root. Since the array was
previously too small to hold the elements, it isoaatically extended to a length of one,
and then to a length of two. Similarly, the eleisan the hashes need not exist before a
value is assigned; they are created automaticallyezessary. For comparison, here is
similar logic using only primitive variables.

1. ..

2. private array(struct("keyQ" array(char, 64), "keyl1" array(char, 64)), 2) $root;
3. $root(0)("key0") = "array element O, hash element k ey0";

4. $root(0)("keyl") = "array element O, hash element k eyl"™;

5. $root(1)("key0") = "array element 1, hash element k ey0";

6. $root(1)("keyl") = "array element 1, hash element k eyl";

7. ..

Notice that unless we invest a lot of time and codenanually allocating the
memory with a dynamic size, we lose the abilityektend the array dynamically. Also,
the structs are not extensible at all, and theee smveral opportunities for a buffer
overrun vulnerability if the input strings come rinoa distrusted source. These are the

same problems that all C code must deal with. Hewehe striking similarity between
the two examples shows two things: first, thatadiog between the two approaches is
easy for the programmer; second, if the programuses the above implementation, an
optimizer will be able to eliminate much of thefil@ency by converting patterns found
in the first example into patterns shown in theoselcexample when possible.

On the topic of efficiency, the array extensionn@ as time-consuming as it
looks. Behind the scenes, the amount of memomrved for the array starts at enough
for four elements and is doubled every time it ransof space. This reduces the amount
of time spent copying the array to a new locationrmemory. While this is logically
irrelevant to the program’s execution, it reduche amortized time complexity of
insertion from O(f) to O(n), where n is the number of times one eterieadded to the
array. Additionally, in many cases an optimizeuldonotice or guess how many
elements are needed and pre-allocate the necemsamynt of memory. In this case, it
would not be hard for an optimizer to transform thatire example into primitive
variables by using an array of structs. While lmelythe scope of our current work, an
optimizer will eventually be an important tool initigating the cost of using auto
variables instead of primitive variables.

Above, we mentioned that auto variables are impleatk by translating every
operation into a function call to a supporting laage library. More precisely, for each
auto variable, the compiler allocates a pointerreltie variable’s value would otherwise
be stored; then each operation on it is translateda function call so that a run-time
library can manage its memory, type, value, refatpatc appropriately. For example, if
an auto variable is declared in a function, the miten allocates a pointer in the stack
frame and a function call is inserted to allocatglab of memory on the heap with the
initial value of undef (undef is described lateBurther operations on the variable result
in the compiler inserting more function calls. tAé end of the function, another function
call is inserted to decrement each auto varialskf'€ount or free it if appropriate. This
way, it is valid to store a reference to the awoable outside the function, since the glob
need not necessarily be freed immediately wherfuhetion returns. Here is the exact
translation for part of the example above intonmiediate code for a 64-bit machine:

1. //"$root" above is translated into "%base - 64b" h ere, which was already
2. [l allocated in the stack frame. After each group of statements, the

3. [/l stack is back to its initial state.

4.

5. [/ private auto $root;

6. stack_alloc 64b; I/l Subtract 8 bytes (64 bits) from

7. /I the stack p ointer

8. call $lang.auto.new.undef; /I Constructs a new auto with the

9. [l value undef and ref-count of 1

10. store <ptr>[%base - 64b], <ptr>; // Pops the po inter to the new auto
11. I/l and stores it at %base - 64b

12.

13. // $root = array{};

14. stack_alloc 64b;

15. call $lang.auto.new.array; /I Constructs a new auto with the
16. I/l value of an empty array

17. store <ptr>, <ptr> [%base - 64b]; // Pushes the location of $root

18. call $lang.auto.refcount_inc; /'Inc ref-cou nt because a binary
19. I/ operator ca Il decrements the

20. /I ref-count o f both inputs

21. call $lang.auto.binop.assign; /I Perform the assignment, store the
22. I/l result (a t emp auto holding the
23. // return valu e of the assignment)
24, I/l in the seco nd parameter’s position

25. stack_free 64b; // Discard poi nter to $root
26. call $lang.auto.refcount_dec; /] Free the te mp auto
27. stack_free 64b; /I Discard poi nter to the temp auto

Although the translation looks somewhat obfuscaieds no more so than the
assembly output from a conventional C compiler, dunslis easy output for a compiler to
generate.

Notice that since a glob may be pointed to in rpidtplaces if references to it are
created, and therefore it cannot be reallocateld avlarger size (because this may require
relocating the glob). This means that the glolaikig element must store a pointer to the
value rather than the actual value, since the valugt be reallocated if it changes in size.
This extra layer of indirection allows, for exampstring buffers that are stored in auto
variables to be extended automatically as necesatrgr than allowing a buffer overrun.
It also allows for certain improvements to effiagrthat we describe later.

5 Z specification

At this point, we have established some informahifarity with what auto
variables are. Now we will describe formally hout@variables are allocated, how their
dynamic type and value are tracked, and how opeEratin them behave.

5.1 Justification

A formal specification of the semantics of autoiables is useful in several ways.
Most obviously, it allows us to reason about wisaspecified before implementation so
we have a clear idea of what to implement beforestaet. Later, it is also useful as an
aid in communicating what we implemented so thaeopeople can understand how to
use the language. It also builds confidence indhguage as a possible tool for use in a
system where safety or reliability are importanfnother benefit is it encourages
portability of code written in Pit because if someadn the future decides to improve or
reimplement the Pit compiler or the accompanyibgglies, he can return to this formal
specification for a clearer understanding of whatstmot change. This way existing
code written in Pit is less likely to encounter tadility problems between the old and
new compilers.

5.2 Conventions

Z notation directly represents nothing more thdatiens between mathematical
sets; there is no inherent sequential meaning ¢ontitation. The representation of a
sequential system is introduced by certain conwestthat represent the state of a system
(or subsystem, such as an abstract data typedltbat us to write relations between a set
that represents the state of the system beforeparation is executed and a set that
represents the state of the system after an operafihe common convention for this is
to decorate the names of the after-states withglesiguote. Inputs to such an operation
are decorated with a question mark, and outputdecerated with an exclamation point.

The specification that follows uses the notationdiostract data types extensively.
An ADT'’s state is represented with a schema, anéibigs in other schemas may be
declared with the ADT’'s name as the type. Strigpeaking, the name of the ADT
represents the set of all possible states for th&,/and the declared variable represents
one state in that set, just as a variable declaseah integer represents one integer in the

set of all possible integers. (For more informatan representing abstract data types
with Z notation, seg5][6].)

Operations on ADTs are named with the name of tié Afollowed by an
underscore and the name of the operation, and tmambiguous, underscores are only
used in schema names that represent operation®ds;ACamelCase is used otherwise.
When referred to in text, a schema’s name is alveaystalized. Because plain Z is not
object oriented, we simply use this naming conwento associate operations with the
structures they must operate on. We decided noséoextensions that provide object
orientation because we do not need any advancadésaf object orientation. Also, the
implementation cannot be object oriented as it nultghately be called from assembly
language by code emitted from a compiler; therefoseng an object oriented extension
to Z would widen the gap between the specificatiord implementation with little
benefit.

Pit supports exceptions, so we had to introduceravention for representing
exceptions. While the exact Pit syntax for repnégg exceptions is not discussed here,
the accompanying libraries must handle errors tjinaexceptions. To represent this, we
simply use an output parameter called “exceptiom!all the operational schemas. The
caller must check this output parameter after ewpgration, and if this is set to “null”,
no exception occurred and execution continues ntymeatherwise, the caller must
branch to the exception handler. The basic typ€ERXTION represents the possible
assignments for this output variable. The actugllementation of exception handling is
more elegant, but because it is too low-level faresent here, this is a simple way to
represent the logic in the specification.

EXCEPTION ::= null | type_mismatch

5.3 Core structure

GLOBID is a basic type that uniquely identifies leacstance of the Glob ADT.
This simply represents a memory address. This sndat variables declared with the
GLOBID type are pointers. We sometimes need tlisrwa variable needs to be shared
between several structures in a way that makesamge in all of them if it changes in
one of them. This works well because memory adéseseally just map integers to data;
we represent this here with partial functions magpGLOBIDs to variables. In
summary, a GLOBID should simply be implemented psiater.

[GLOBID]

Similarly, we use VALUEIDs to identify each instanof the Value ADT. Each
Value has a ref-count that lets us use a copy-gewnplementation (explained later).
VALUEIDs should also be implemented as simple ot

[VALUEID]
There are two minor things about the specificatiwat are slightly nonstandard.

First, some schemas are defined after they are usedid this because it is significantly
clearer to explain the schemas in the order theypaesented, and it has no impact on

their meaning. Second, unfortunately there istandard notation for comments within a
schema; we use a common convention us¢€]jrthough, which is right-justified square
brackets here above or to the right of what it dbss.

The Glob schema is the central part of this speatifin. It describes a single
variable by encapsulating what the current typéhef variable is along with its value.
Glob is an abstract data type that representsadaicture pointed to by one or more
auto variables. It can represent an integer, iblactstring, array, hash, reference, or
function-reference. Every auto variable is simplLOBID stored on the stack. Every
Glob must have at least one reference on the staekdata segment, or in another auto
variable (when the GLOBID for a Glob is deletec @lob is freed).

Undef is a special value with a type distinct frath other types. Normally it
means that no value has been assigned to the kariali undef can also be explicitly
assigned, if desired, as a way to represent avalldle. It is equal to itself and no other
value, so code can explicitly check for the undefue by comparison. In boolean
context, it always evaluates to false. Any othgeration on the undef value causes an
exception. (When dealing with strings, often Ceadll use the null-pointer as a distinct
value from the empty string. Undef is useful ie #ame way, however it is also useful in
more contexts than just string manipulation.) Tihia rather strange data type, because it
represents only one possible value; therefore, varmable’'s type is undef, its value is
undef as well. When implemented, this means tpattafrom the Glob, no memory
needs to be allocated for this value. A null-peirfor the value is sufficient to describe
undef. For the purposes of our specification, wingé UNDEF to be a basic type with
one possible value. The global variable undehisgags set to that value; this variable is
simply a notational convenience.

[UNDEF |

| undef : UNDEF

Each Glob has a ref-count which, like in many oth&nguages, lets us
automatically figure out when to deallocate the liGloHere, the ref-count for a Glob
tracks the number of occurrences of its GLOBID. it confuse these with the ref-
counts associated with a Value, which track the memmof Globs referencing its
VALUEID. (There are two purposes for ref-counts track how many auto variables
reference a particular GLOBID and to track how mdasipbs reference a particular
VALUEID.) For efficiency, multiple Globs can reféo the same Value. This allows us
to use copy-on-write logic; we pass auto variablesveen functions without copying the
Values unless the variables are modified. For g@@mconsider an auto variable
pointing to a Glob pointing to a Value that is stgran array. When the variable is
passed as an input parameter to a function, a nel Gith a unique GLOBID is
allocated and referenced by a new auto variabléhén parameter list of the called
function. The new Glob begins by pointing to tlaene Value as the Glob referenced by
the caller. Both Globs have a ref-count of one #edValue has a ref-count of two. If
the function modifies the array, the Value is cdpieto a new Value, and the second
Glob is modified to point to the new Value, whileetref-count of the old Value is
decremented to one. Both Globs still have a refit@f one, both Values now have a

ref-count of one, and the structures are now indeéget of each other. If the called
function does not modify the array, the Value ivarecopied and the ref-count of the
Value is simply decremented when the function retursaving an expensive copy
operation. (When modifying a Value, if more memaynot needed, it should only be
copied if its ref-count is greater than one; othisenit should be modified in-place for
efficiency.) The same logic applies to assignméithen one auto variable is assigned to
another, a new Glob is allocated, but the Valueeised until either of the variables is
modified. The same logic also applies to elemstdged in the example array, not just
the array itself, and so we can casually pass lagyaplex data structures between
functions without an expensive copy operation ekeepen the structure is modified.
Even when the structure is modified, usually ordytf it needs to be copied. This has
the surprising effect that code that uses autcalbées to store arrays and hashes may
perform substantially faster than code that usésifive strings, arrays, and structs,
depending on how the variables are used (unlesswfe, similar copy-on-write logic is
reimplemented manually).

In the Glob schema, the value can be any singlgevisbm several possible sets.
As this is the core of the specification, we’ll ohef it first to give the reader a context for
understanding the schemas that follow. This schepeesents a structure in memory
that represents a reference count and a valueiceNibiat here we say the value element
in a Glob can be undef, another GLOBID, or a VALDEIUndef is represented directly
in the glob, as it requires no additional inforroati One way to implement this,
assuming Glob is a struct and value is a pointér;, iwould be to set the value element to
null to represent undef. A Glob that referencestlaer Glob is also directly represented
here, rather than as a Value, because again wesiogly use the same pointer for
referencing a Glob or a Value, and allocating acétire inbetween would just be a waste
of memory and CPU time. It is necessary to stomatwhe type of the value is to
differentiate between the different types that benstored in Value and a pointer to a
Glob. However, exactly how and where to storetyip® is not important here; in the
specification, we differentiate by checking whidt the value is in.

__Glob
refcount :N
value : UNDEFU GLOBID u VALUEID

[VALUEID is explained later]

For convenience in our specification, we’ll exgligitrack all the Globs using a
partial function to map GLOBIDs to Globs. An exaistructure for this is not necessary
during implementation, as the actual memory addsegBces to uniquely identify a
Glob, but here we must use a GLOBID to clarify wisettwo Globs with the same value
are distinct, or whether they are the same Globh wwo references. For the
specification, we also need this to represent apersto create and destroy Globs. Free
Globs always have a refcount of zero and a valuendkef. The domain of free_globs
represents all the possible return values for tamary allocator.

__AllGlobs
allocated_globs : GLOBIB~ Glob
free_globs : GLOBID-+ Glob

dom allocated_globs dom free_globs & [No overlap |
dom allocated_globs dom free_globs = GLOBIDJ All are represented]
Vv x : ran allocated_globsx.refcount > 0

Vv x : ran free_globsx.refcount = Ox x.value = undef

The initial state of the system has no allocatembgl Notice that this one
initialization schema implies the initial state thie other schemas that follow, such as
AllAutos.

__AllGlobs_Init
AllGlobs

dom allocated_globs & [Implies all are in free_globs]

AllAutos is a container representing all the audoiables. This includes both the
auto variables created by the runtime environmentwede emitted by the compiler when
translating the program and auto variables defimg@perations in the schemas in this
specification, such as the reference operator aohge in arrays and hashes. For
example, if an auto variable is storing a referetacan auto variable, the GLOBID for
both the reference and the referent are includeébdarbag called autos. When a function
is entered or exited, the code emitted by the clanpnserts code to update this by
caling either $lang.auto.new.undef (represented bAdlAutos_Create) or
$lang.auto.refcount_inc (represented by Auto_IncBafit), depending on whether it's a
new variable or an alias to an existing variabite] $lang.auto.refcount_dec (represented
by Auto_DecRefcount). It is up to the compileradd and subtract the references it
creates from the refcounts by calling these fumstiadhis is outside the scope of this
specification because it depends heavily on thetagynof the language.
$lang.auto.refcount_dec will never be called withaucorresponding previous call to
$lang.auto.refcount_inc; the compiler guarantees. th (The reverse is possible;
$lang.auto.refcount_inc can be called without a responding call to
$lang.auto.refcount_dec if, for example, there isfuaction that loops infinitely,
preventing the second call from ever executingis ©§not a concern.)

__AllAutos
AllGlobs
autos : bag GLOBID

[This means a Glob’s refcount must match |
[the number of occurances of it in the bag.]
Vv x : dom autos autos# x = allocated_globs(x).refcount
[This means a Glob that’s a reference to a |
[Glob must put that reference in the bag.]
Vv x : {x : ran allocated_globs | x.valeeGLOBID } . x.valuee autos

When a new Glob is created, its ref-count alwaggstat one and its initial value

is always undef. We represent creating Globs aspanation on All_Globs that returns a
Glob.

__AllAutos_Create

AAllAutos [This operation corresponds to $lang.amtev.undef |
glob_id! : GLOBID

glob_id!e dom free_globs
allocated_globs’ = allocated_globs
{ glob_id! — (refcount— 1, value— undef) }
[This implicitly adds glob_id to the]
[autos bag once because refcountis 1.]
dom free_globs’ = dom free_globglob_id!

AllAutos_IncRefcount and AllAutos_DecRefcount imgitly update the ref-count
on the corresponding Glob, as described by AllAatod AllGlobs.

__AllAutos_IncRefcount

AAllAutos [This operation corresponds to $lang.awfzount_inc]
glob_id? : GLOBID

autos’ = autos [glob_id?]

Notice AllAutos_DecRefcount is a very loaded operat When it is called, if
there are no more occurrences of the glob_id, plisitly moves the Glob from

allocated_globs to free_globs, again because atdhstraints in AllAutos and AllGlobs.
This, in turn, implicitly sets the value to undef.

__AllAutos_DecRefcount
AAllAutos [This operation corresponds to $lang.awfzount_dec]
glob_id? : GLOBID

autos’ = autos fFglob_id?] [Missing symbol for bag-difference. |

5.4 Structure of encapsulated values

The above schemas define our core memory struatddow to track ref-counts.
Now we define the various things that can be starexh auto variable. In the interest of
efficiency, we have already defined undef and arezfce to another Glob as possible
values represented without the infrastructure beldw the implementation, it may be
desirable to represent other common cases (suahtexgers that are no larger than a
pointer) directly in the Glob rather than in th@aeate allocations below; however if this
is done, the cases must not require the Glob teesiged, because that will sometimes
require the Glob to be moved to a new location emmary, which will break references
to it. In short, the Glob’s address must not mafter it is allocated, so any dynamically
sized parts of a variable must be stored separasghg the infrastructure below. This is
the main reason that values are not stored directBlobs.

First, we need an ADT to hold the ref-count. We asseparate schema for this
because the ref-count is always there regardlesehmh type of value is assigned. A
suggested implementation is define a struct fohagge of value, all of which store the
ref-count as the first element. Then when thecoefrt is needed, it can be easily
accessed without regard for which struct definitibis is. To minimize the number of
calls to the memory allocator, all the informatfona Value should be stored in the same
chunk of memory, if possible (hashes are probdigyoinly exception to this).

_ Value
refcount :N
value : Integew Fractionu Stringu Array u Hashu Fref

AllValues is quite similar to AllGlobs; it gives wsway of tracking which Values
are unique and it enforces ref-counts. The lasgt gfathe predicate in AllValues looks
obtuse, but it is just expressing what we alreadyitively know ref-counts of values to
be. Itis saying that the ref-count of a Valualways equal to the number of Globs that
refer to its VALUEID.

__Allvalues
AllGlobs
allocated_values : VALUEID~ Value
free_values : VALUEID- Value

dom allocated_values dom free_values &

dom allocated_values dom free_values = VALUEID

V x : ran allocated_valuesc.refcount > 0

Vv x : ran free_valuesx.refcount = 0

Vv v : dom allocated_valuesallocated_values(v).refcount =
#{ g : dom allocated_globs | allocated_globs(g).eafw }

Finally, after much infrastructure, we define theusture of each possible type.
These should mostly be fairly obvious; all the idifft parts are expressed above.
Integers and fractions are particularly easy pdggis. Notice that there is no bound on
integers or on the numerator or denominator foctibas. This means that if an
operation’s result cannot be stored in the amodimh@mory available, more must be
allocated.

__Integer
value :Z

__Fraction
num :Z
denom N [The denominator must be positive. |
denom >0
num = 0= denom =1 [Avoid dividing by zero. |

[This says fractions must be stored in reduceoh f¢

num > 0= -3 x:N. (X > 1)A (num/ xe N) A (denom / x N)

A String is a homogenous sequence of integerspriffitive “string” can be any
homogeneous sequence, like what C calls an arilye only purpose of supporting
“string” separately from “array” in the context @futo variables is to provide an
acceptably efficient way to represent sequencemtefiers. Allowing an unrestricted
subtype here would require so much complexity iuldodefeat this purpose.) While
usually the integers will be unsigned and 8 bitdayithe implementation must support
both signed and unsigned at any size. Any widtimtafger is valid; even strange widths

such as 13-bits must be supported. Also, whilentltths of elements in a single string
must be constant, the widths of elements may Werdiit widths for different strings in
the same program. During storage, the sizes maycbeased. For example, a string of
13-bit integers may be represented internally uslfigbit integers for efficiency.
However, there must be no way for outside codeetbthe difference between an
implementation that uses true 13-bit integers amdngplementation that uses integers
padded to 16 bits. When deciding whether to usilipg, the tradeoffs between the cost
of conversions and the inefficiency of unalignetkgers must be carefully weighed.

__String
width : N
value : sedN
signed : boolean

width > 0
if signed then

Vv char ; value -2V -1 <= char < #'d"-1
else

V char : value 0 <= char < ¥

An Array is a sequence of auto variables, allowingp be heterogeneous. The
contained auto variables may contain any valid tgpelata, including, for example,
another Array.

__Array
value : seq GLOBID

[This means all elements in the Array must |
[must increment the reference count (through |
[the autos bag). |
Vv x : value. X € autos

A Hash can be thought of as a dynamic representafia primitive struct. More
precisely, it is a mapping of keys (a domain ofque strings, colloquially known as
keys) to values (a range). It has all the propertif a partial function: each key must be
unique, but a value can occur many times. It &la® all the desirable properties of a
hash table: finding or deleting a key is an O(pgration, and inserting a key is an
O(log(n)) operation (incurring the log(n) cost besa sometimes the table must be
extended, which requires reorganizing all the keyagditionally, however, our Hash
object remembers the order in which the keys weserted (unless the order is explicitly
modified), so iterating through the keys alwayddgethe same order of elements. This

may be implemented trivially by forming a two-waiyled list out of the keys, in
addition to inserting the keys into the hash tabléere is no cost for this in terms of
time-complexity (and only an irrelevant fixed césteach write operation to maintain a
couple of extra pointers), yet it adds much expvesgalue to the data structure. It also
makes Hashes capable of everything a primitivecstigi capable of. To achieve this
efficiency, it must be a single hybrid data struefunot two separate structures, but in our
specification, we represent the ordering of theskegparately from the partial function.

__Hash
value : String- GLOBID
order : seq String

[This means all elements in the Hash must]
[must maintain the reference count (through]
[the autos bag).]
V X : ran value x e autos
dom value = ran order [Value and order describesime set. |

It would be infeasible to support auto referenceslitthe various combinations of
types that a pointer can reference. However, stipgoreferences to auto variables is
necessary to support complex data structures, aposting references to functions is
necessary to support abstract data types. (FudiBeussion of the implementation of
abstract data types is beyond the scope of thisisison.)

In Pit's terminology, a pointer is just like C’s ipters, which are a primitive
integer storing a memory address with an optiotetlcssub-type property that allows it
to be dereferenced. Pointer arithmetic and comwesdo and from integers are allowed.
Pointers cannot reference auto variables. An @at@able cannot store a pointer, except
by interpreting it as an integer when stored araipging a typecast when fetched. A
reference is an auto variable that refers to amath® variable; it is a type that can only
be stored in an auto variable, and it can onlyrrefeauto variables. References do not
allow arithmetic or conversions to and from integerReferences are strong, meaning
that they increment the reference count of thereete thus preventing garbage collection
for the duration of the reference.

Because a reference is just a pointer in the coofean auto variable with certain
restrictions, we do not need to allocate an addhllistructure for it, and formally we
have no additional schemas to represent it. Asribesl above in the Glob schema, the
value element of a Glob can simply store a GLOBIBally.

Fref means “function reference”. These functiofemences are restricted to
functions with a certain prototype by the compileo, we don’'t have to represent the
prototype dynamically.

[FUNCTIONID]

_ Fref
value : FUNCTIONID

5.5 Operations

These schemas represent the various operationgdhabe performed on auto
variables. It is worth clarifying the context diese operations. Remember, we're trying
to represent the semantics of operations on autables as written in Pit. A schema that
represents an operation, for example, Auto_Addatese a new structure to hold the
return value of the operation. For example, thgeasentation of “$a = $b + $c - $d” is,
informally, three operations, each requiring a elaxhold the return value:

AllAutos_Create(glob_id& $temp1l)

Auto_Add(left— $b, right— $c, result> $temp1l)
AllAutos_Create(glob_idb $temp?2)
Auto_Subtract(left> $templ, right> $d, resuli> $temp2)
AllAutos_DecRefcount(glob_ie> $temp1l)
AllAutos_Create(glob_idt $temp3)

Auto_Assign(left— $a, right— $temp2, resuk> $temp?3)
AllAutos_DecRefcount(glob_ieb $temp?2)
AllAutos_DecRefcount(glob_ieb $temp3)

Obviously, substituting $a for $temp2 and elimingti $temp3 and the
Auto_Assign operation, would be more efficient, g are interested in the general
case, not optimized cases, at this point, and éngétneral case, every operation has a
return value. There are several oversights anthsiia problems in the example above,
but we’ll ignore these for the moment; they areeassary as we map the informal
description to the formal specification becausetifigr moment we are not interested in a
formal specification of the language’s syntax. Tétirn value of the last operation in a
statement gets its ref-count decremented or islfree

Clearly, most of the binary operators will be ngadlentical in their specification.
They are so similar and there are so many, it wbel@onfusing and a waste of time to
specify all of them. We will specify only one opgon for each set of operations that are
almost identical. For example, subtract, multigide, modulus, as well as bit-wise
operations (or, nor, and, nand, xor, nxor, shiftiage omitted. Assignment is quite
different, as explained below, so this one is notited. Unary operators differ
substantially from binary operators, so we incladgation.

__Auto_Add
AAllAutos
left? : GLOBID
right? : GLOBID
result? : GLOBID
exception! : EXCEPTION

if

Integer_Add(
left? — allocated_globs(left?).value
right? — allocated_globs(right?).value
result?— allocated_globs’(result?).value

) v Fraction_Add(
left? — allocated_globs(left?).value
right? — allocated_globs(right?).value
result?— allocated_globs’(result?).value

)
then exception! = null
else exception! = type_mismatch [result is uncleanlg
__Integer_Add
left? : Integer

right? : Integer
result! : Integer

result!.value = left?.value + right?.value

_ Fraction_Add
left? : Integer
right? : Integer
result! : Integer

result!.num / resultl.denom =
left?.num / left?.denom + right?.num / right?.denom

Auto_Assign is another loaded operation, becauseghwhere the ref-counts of
Values come into play. In the statement “$a = $bg& actual value is not copied. As
described above, to accomplish this, Value had-aount that is distinct from Glob’s

ref-count. For example, assume the ref-counthefGlobs for $a and $b start at one;
these do not change. The sequential logic of $sgament is as follows:

» Decrement the ref-count on the previous Value ofabal free it if zero).
* Increment the ref-count of the Value for $b twice.

« Point the Glob for $a at the Value for $b.

* Point the result Glob at the same Value.

After this, $a and $b still have the same disti@tibs, but these Globs point to
the same Value. If, for example, $b is incremen&er with the statement “$b += 17,
the link is broken. A new Value for $b is creatadd the Glob for $b is pointed at it.
The old Value's ref-count is decremented, but meed because $a still points to it.
Notice that this is not the behavior expected frameference; if $a were a reference to
$b, for example through the statement “$a = $bthg ref-count for the Value of $b
would be unaffected. In this case, the Glob fors&aes a pointer to the Glob for $b.
This time, the ref-count for the Glob for $b, rathtban its Value, is incremented.
Afterwards, $a and $b still have distinct Globst the Glob for $a points to the one for
$b.

—_Auto_Assign
AAllAutos
left? : GLOBID
right? : GLOBID

result? : GLOBID
exception! : EXCEPTION

[Implicitly increments refcount of new value |
[and decrements refcount of previous value. |
allocated_globs’(left?).value = allocated_globd{t®).value
[Implicitly increments refcount of new value. |
allocated_globs’(result?).value = allocated_glabk(f).value
exception! = null

The reference operator in the above example “$ab<-"$is represented by
Auto_Ref; it is relatively straight-forward.

__Auto_Ref
AAllAutos
in? : GLOBID
result? : GLOBID
exception! : EXCEPTION

[Implicitly increments refcount of the Glob far.i]
allocated_globs’(result?).value = in?
exception! = null

Negation is a fairly simple case. Bitwise-not early identical to negation, so it
is omitted.

__Auto_Negate
AAllAutos
in? : GLOBID
result? : GLOBID
exception! : EXCEPTION

Integer_Negate(
in? — allocated_globs(in?).value
result!— allocated_globs’(result?).value
) v Fraction_Negate(
in? — allocated_globs(in?).value
result!— allocated_globs’(result?).value

)
then exception! = null
else exception! = type_mismatch [result is uncleang

__Integer_Negate
in? : Integer
result! : Integer

result!.ref-count = 1
result!.value = - in.value

__Fraction_Negate
in? : Integer
result! : Integer

result!.num / resultl.denom = (- in?.num / in?.d@&)o

6 Conclusion

Syntax and semantics are central to any programhainguage. When developing
a programming language such as Pit, it is quitg@fbklto specify these constraints
formally because creating a compiler is diffic@yen with a clear understanding of the
language. The design of a language can benefit therapplication of formal methods
by enhancing understanding and communication betwe#iaborating developéts A
formal specification also provides a context in evhtorrectness, an important property
of a compiler, can be formally analyzed. Additittyait helps make the language’s
description more precise and unambiguous, makiegster for a user to learn. It is also
necessary to carefully analyze important aspecthetanguage during the early stages
of development to help avoid inconsistencies. T¥as the main objective of this effort,
and it was successfully achieved using Z not&tionAlong with these advantages, Z
notation was effective in representing the autoalde type.

7 References

[1] Jeannette M. Wing. A specifier’s introductianformal methods. Computer 23, 9
(1990): 8-22.

[2] NASA. Formal methods demonstration projectdpace applications — phase | case
study: space shuttle orbit DAP jet select. JPLuoent D-11432, (1993).

[3] Arnd Poetzsch-Heffter. Specification and vexdfiion of object-oriented programs.
Technical University of Munich, 1997.

[4] J. S. Dong, R. Duke, and G. Rose. An objectraed approach to the semantics of
programming languages. Proceedings of 17th Auatrdiomputer Science
Conference (1994): pp. 767-775.

[5] J. M. Spivey. The Z notation: a reference mantaentice Hall International (UK)
Ltd, 1992. (0-13-978529-9).

[6] Jonathan Jacky, The way of Z: practical prograng with formal methods.
Cambridge University Press, 1996. (0-521-55976-6).

[7] Dick Grune, C. Jacobs, Koen Langendoen, andiHgal. Modern compiler design.
Wiley, 2001.

[8] Edmund M. Clarke and Jeannette M. Wing. Formathods: state of art and future
direction. ACM Computing Survey 28, 4 (1996): 62436

[9] Nathaniel Gray, Cristian Tapus, Aleksey Nogind Jason Hicy. Building reliable
compilers with a formal methods framework. inteior@él symposium on
software reliability engineering (2003): 319-320.

[10] M. Mernik and M. Leni and E. Avdi and V. Umdeusable object-oriented
approach to formal specifications of programmingglaages. L'object, 4, 3
(1998).

[11] Leif Pedersen. Pit programming language. Hgp:devpit.org/.

[1] @article{102816, author = {Jeannette M. Wing}le = {A Specifier's Introduction to
Formal Methods}, journal = {Computer}, volume = {E3umber = {9}, year =
{1990}, issn = {0018-9162}, pages = {8--23}, doi =
{http://dx.doi.org/10.1109/2.58215}, publisher =HEE Computer Society
Press}, address = {Los Alamitos, CA, USA}, }

[2]

[3] @PhDThesis{Poetzsch-Heffter97specificatiorietit {Specification and Verification
of Object-Oriented Programs}, author = {Arnd Poetesieffter}, school =
{Habilitation thesis, Technical University of Mutii}; note = {Available}, month
=jan, year = 1997, }

[4]

[5] @book{129612, author = {J. M. Spivey}, title Fhe Z notation: a reference
manual}, year = {1992}, isbn = {0-13-978529-9}, digher = {Prentice Hall
International (UK) Ltd.}, address = {HertfordshirdK, UK}, }

[6] @book{249512, author = {Jonathan Jacky}, tHgThe way of Z: practical
programming with formal methods}, year = {1996}bis= {0-521-55976-6},
publisher = {Cambridge University Press}, addred®New York, NY, USA}, }

[7] @book{556249, author = {Dick Grune and C. Jazaind Koen Langendoen and
Henri Bal}, title = {Modern Compiler Design}, year {2000}, isbn =
{0471976970}, publisher = {John Wiley \& Sons, Ihcaddress = {New York,
NY, USA}, }

[8] @article{242257, author = {Edmund M. Clarke alhehnnette M. Wing}, title =
{Formal methods: state of the art and future dicgxd}, journal = {ACM
Comput. Surv.}, volume = {28}, number = {4}, year{#996}, issn = {0360-
0300}, pages = {626--643}, doi = {http://doi.acmgdt0.1145/242223.242257},
publisher = {ACM}, address = {New York, NY, USA}, }

[9] @inproceedings{Gray03buildingreliable, authofNathaniel Gray and Cristian
Tapus and Aleksey Nogin and Jason Hicy}, title =ufling reliable compilers
with a formal methods framework}, booktitle = {Thdth International
Symposium on Software Reliability Engineering (ISSE003). Supplementary
Proceedings}, year = {2003}, pages = {319--320}ppsher = {Chillarege
Press}, }

[10]

[11]

