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Abstract.  Pit[15][16] is a new language for low-level programming, designed to be a self-
hosting alternative to C.  The novelty is it supports automated memory management without excluding 
manual memory management, and without hindering key features associated with low-level 
programming, such as raw pointers, inline assembly code, and precise control over execution. 

This paper presents Pit as a language, then examines how Pit’s approach to memory 
allocation can be used to significantly increase the security of low-level programs.  Automatic memory 
allocation is a useful tool of abstraction in many situations.  Since Pit provides this tool without 
hindering low-level programming, it allows automated memory management to be used in programs 
where it previously could not be used, such as kernels.  Specifically, this tool of abstraction can assist 
the programmer significantly in writing low-level code with fewer security problems caused by buffer 
overrun or integer overflow bugs by reducing the number of opportunities for such bugs in areas of 
code that do not need the precision of manual memory allocation.  Existing solutions, such as 
Cyclone[23] add various ways of checking bounds, but have two major disadvantages: they require extra 
work from the programmer, and they detect but do not fix memory allocation bugs.  Pit’s approach 
simplifies what the programmer writes, making code more understandable. 

1 Introduction 
General-purpose programming languages, referring to languages designed for writing wide ranges 

of applications such as C, Perl, and their relatives, may be characterized by their style of memory 
management and level of abstraction. As a general trend, less abstract languages require the programmer to 
explicitly code memory management logic and statements express CPU instructions more directly with 
greater detail, while more abstract languages require less attention to memory management and represent 
the intent of the program more directly with less detail. There are, of course, many points of view on 
classifying languages, but for this discussion, the interesting trade-offs between general-purpose languages 
are manual or automatic memory management, representing CPU instructions directly or the intent of the 
algorithms, and representing more detail or less detail. For example, C represents the CPU’s instructions 
almost directly and provides no automated memory management and requires more detail in the code, 
however Perl manages memory entirely automatically and usually represents complex algorithms in less 
code. The cost to using Perl is, of course, efficiency; in many cases, Perl code is so slow it cannot meet the 
user’s requirements.  This pattern of trade-offs frequently applies to comparisons between a low-level and a 
high-level language. This brief discussion may seem to imply a trade-off between automated memory 
management and expression of fine-grained detail, however even if this connection holds (and it may not) it 
does not exclude the possibility of creating a language that can express both sides of the trade-offs in 
adjacent statements.  This duality is precisely what Pit implemented. 

Unfortunately, most software does not divide as neatly as most languages into “low-level” and 
“high-level” where, for example, low-level applications cannot afford the cost incurred by high-level 
languages and high-level applications cannot afford the cost of extra effort in development time incurred by 
low-level languages.  Most nontrivial software has some code that does not need to execute efficiently and 
therefore would benefit from a high-level language and some code that must execute quickly or for other 
reasons cannot afford the costs of a high-level language.  Graphical programs are an easy example of this; 
code that deals with individual pixels and polygons for rendering images and animations benefits 



significantly from optimizing at the level of individual CPU instructions, while code that directs larger user 
interface widgets such as window placement and buttons benefits far more from greater abstraction. 

It’s possible to bridge this gap by using two languages to write a program, but this approach has 
disadvantages. One problem is it’s difficult for a module written in one language to access data stored in 
memory by a module written in a different language because most languages store data in memory quite 
differently from each other. Perhaps more importantly, using two languages to implement the software 
creates an artificial boundary in the logic based on the capabilities of the two languages rather than based 
on a natural separation of concern that’s convenient for the program’s design. A better solution is to use a 
language that allows both approaches and allows fine-grained control over when each approach is applied. 
Pit uses variable declarations to determine which approach to use, which allows convenient yet precise 
control. 

Pit is a compiled language derived primarily from C. While it is designed to be familiar to C 
programmers, the languages are different enough in coding style that it will probably always be a manual 
task to translate between C code and Pit code in a way that produces reasonably understandable code.  The 
novelty is that it simultaneously supports the variable types found in C, called “primitive variables” and 
another class of variables called “auto variables”. Auto variables are declared syntactically using the 
keyword “auto” in place of the type specification. Auto variables are similar in many respects to variables 
implemented by Perl; in this regard, Pit is secondarily derived from Perl. They are dynamically typed and 
manage memory automatically. The programmer can choose to write the entire program using only auto 
variables, only primitive variables, or a combination of both.  This allows the programmer to choose to use 
automated or manual memory management with every variable declaration.  Thus, the programmer can 
write some code that has all the characteristics of C code by avoiding auto variables, and in the same 
function write more code that has all the benefits of automated memory management and dynamically 
typed variables by using auto variables. 

Pit (named simply for Devpit.org) began as a classroom project to implement a C library for 
implementing dynamically-typed variables in C, which eventually developed into Pit’s concept of auto 
variables.  Its API used a single struct pointer type for variables which could store any type of value.  The 
struct was opaque to the programmer, but indicated whether it contained an integer, string, hash, etc.  We 
analogized this variable type to a Perl scalar variable.  The API provided functions for the programmer to 
call for each operation, such as assign, add, reference, dereference, etc.  Much like with Perl scalars, each 
variable carried a reference counter, which, for example, incremented when storing the variable in a larger 
structure.  The programmer had the responsibility of calling a function which would decrement this 
reference counter or free the variable (recursively for multilevel data structures) every place execution 
could exit the scope containing the variable.  This wasn’t bad as far as complex data structure manipulation 
in C goes, but it was far too clumsy for managing simple strings; nobody writing “real” software would 
want to use this for simple things.  We finally redesigned this concept as a new language.  This has several 
advantages.  Most importantly, it simplifies the concept of auto variables enough that they are easier to use 
than primitive variables, which are still as easy to use as C’s variables. now the compiler automatically 
inserts the calls to decrement the reference count or free these variables; this tips the balance, making it 
easier to use than manual allocation.  Further, we could now add several important features missing from 
other low-level languages such as exceptions and namespaces.  Also, the programmer can write operations 
on the new variable type with symbolic operators in the same way as traditional variables, rather than as 
function calls.  In adding these features, we kept the language within constraints that make suitable for the 
lowest-level programs traditionally written in C, especially kernels.  To be sure, other languages have these 
features, but none of them fit within constraints these constraints.  During this work, we studied ways that 
these improvements could be used for better security, portability, general maintainability, etc in low-level 
programs. 

The compiler implements auto variables by inserting function calls to a supporting library. Each 
operation translates into a function call, and it inserts additional calls for incrementing and decrementing 
reference counts for garbage collection. It also transparently inserts calls to this library for converting from 
a primitive variable type to an auto variable or vice versa, making it easy to assign a value from a primitive 
variable to an auto variable and vice versa. Pit is self-hosting, meaning that it can express its own compiler 
tools and supporting libraries with no tools written in other languages (although this work is in progress). 
To accomplish this, the supporting language library uses primitive variables to construct the data structures 
that store information for auto variables. 



Pit is designed to be suitable for (but not limited to) low-level programming, such as for operating 
system kernels, device drivers, system libraries, etc. This is perhaps the class of software that is most 
starved for improvements in languages because most implementations of recent languages require a virtual 
machine, prevent manual memory management, and don’t have a way to access assembler code. Pit can 
interact with C code reasonably easily, which makes transitioning or interacting with an existing project 
easier. All C variables map directly to primitive variables in Pit, and the calling convention for functions is 
close enough that a simple wrapper function can work around the differences. 

2 Examples of Pit syntax and translation to assembly 
If auto variables could only store simple values, such as integers, floats, and references, they 

would obviously not be particularly useful.  Their power becomes apparent when they are compounded to 
create a complex data structure.  Creating a complex data structure using auto variables is trivial.  To do so, 
simply assign an array or hash to an element of an array or hash, as follows. 

 
1.  ... 
2.  private auto $root;   // Declare $root as a local v ariable 
3.  $root = array{};      // Assign an empty array to i t 
4.  $root(0) = hash{};    // Assign an empty hash to th e zeroth element 
5.  $root(0)("key0") = "array element 0, hash element k ey0"; 
6.  $root(0)("key1") = "array element 0, hash element k ey1"; 
7.  $root(1) = hash{}; 
8.  $root(1)("key0") = "array element 1, hash element k ey0"; 
9.  $root(1)("key1") = "array element 1, hash element k ey1"; 
10.  ... 

 
Notice how concise this code is because there is no need to explicitly tell the compiler how much 

memory to allocate for the array or hash tables, when to free the memory, or what the type of each value is.  
On line 2, we create an array and assign it to $root, which dynamically assumes the array type.  The 
memory for the array is initially allocated with a size of zero, and later it is extended as necessary.  On lines 
3 and 6, we create hashes and assign them to elements of the array $root.  Since the array was previously 
too small to hold the elements, it is automatically extended to a length of one, and then to a length of two.  
Similarly, the elements in the hashes need not exist before a value is assigned; they are created 
automatically as necessary.  For comparison, here is similar logic using only primitive variables. 

 
1.  ... 
2.  private array(struct("key0" array(char, 64), "key1"  array(char, 64)), 2) $root; 
3.  $root(0)("key0") = "array element 0, hash element k ey0"; 
4.  $root(0)("key1") = "array element 0, hash element k ey1"; 
5.  $root(1)("key0") = "array element 1, hash element k ey0"; 
6.  $root(1)("key1") = "array element 1, hash element k ey1"; 
7.  ... 

 
Notice that unless we invest a lot of time and code in manually allocating the memory with a 

dynamic size, we lose the ability to extend the array dynamically.  Also, the structs are not extensible at all, 
and there are several opportunities for a buffer overrun vulnerability if the input strings come from a 
distrusted source.  These are the same problems that all C code must deal with.  However, the striking 
similarity between the two examples shows two things:  first, that choosing between the two approaches is 
easy for the programmer; second, if the programmer uses the above implementation, an optimizer will be 
able to eliminate much of the inefficiency by converting patterns found in the first example into patterns 
shown in the second example when possible. 

On the topic of efficiency, the array extension is not as time-consuming as it looks.  Behind the 
scenes, the amount of memory reserved for the array starts at enough for four elements and is doubled 
every time it runs out of space.  This reduces the amount of time spent copying the array to a new location 
in memory.  While this is logically irrelevant to the program’s execution, it reduces the time complexity of 
the extension from O(n2) to O(n * log(n)), where n is the number of times one element is added to the array.  
Additionally, in many cases an optimizer could notice or guess how many elements are needed and pre-
allocate the necessary amount of memory.  In this case, it would not be hard for an optimizer to transform 
the entire example into primitive variables by using an array of structs.  While beyond the scope of our 



current work, an optimizer will eventually be an important tool in mitigating the cost of using auto 
variables instead of primitive variables. 

Above, we mentioned that auto variables are implemented by translating every operation into a 
function call to a supporting language library.  More precisely, for each auto variable, the compiler 
allocates a pointer where the variable’s value would otherwise be stored; then each operation on it is 
translated into a function call so that a run-time library can manage its memory, type, value, ref-count, etc 
appropriately.  For example, if an auto variable is declared in a function, the compiler allocates a pointer in 
the stack frame and a function call is inserted to allocate a glob of memory on the heap with the initial 
value of undef (undef is described later).  Further operations on the variable result in the compiler inserting 
more function calls.  At the end of the function, another function call is inserted to decrement each auto 
variable’s ref-count or free it if appropriate.  This way, it is valid to store a reference to the auto variable 
outside the function, since the glob need not necessarily be freed immediately when the function returns.  
Here is the exact translation for part of the example above into intermediate code for a 64-bit machine: 

 
1.  // "$root" above is translated into "%base - 64b" h ere, which was already 
2.  // allocated in the stack frame.  After each group of statements, the 
3.  // stack is back to its initial state. 
4.   
5.  // 1.  private auto $root; 
6.  stack_alloc 64b;                     // Subtract 8 bytes (64 bits) from 
7.                                       // the stack p ointer 
8.  call $lang.auto.new.undef;           // Constructs a new auto with the 
9.                                       // value undef  and ref-count of 1 
10.  store <ptr> [ %base - 64b ], <ptr>;  // Pops the po inter to the new auto 
11.                                       // and stores it at %base - 64b 
12.    
13.  // 2.  $root = array{}; 
14.  stack_alloc 64b; 
15.  call $lang.auto.new.array;           // Constructs a new auto with the 
16.                                       // value of an  empty array 
17.  store <ptr>, <ptr> [ %base - 64b ];  // Pushes the location of $root 
18.  call $lang.auto.refcount_inc;        // Inc ref-cou nt because a binary 
19.                                       // operator ca ll decrements the 
20.                                       // ref-count o f both inputs 
21.  call $lang.auto.binop.assign;        // Perform the  assignment, store the 
22.                                       // result (a t emp auto holding the 
23.                                       // return valu e of the assignment) 
24.                                       // in the seco nd parameter’s position 
25.  stack_free 64b;                      // Discard poi nter to $root 
26.  call $lang.auto.refcount_dec;        // Free the te mp auto 
27.  stack_free 64b;                      // Discard poi nter to the temp auto 

 
Although the translation looks somewhat obfuscated, it is no more so than the assembly output 

from a conventional C compiler, and this is easy output for a compiler to generate. 
Notice that since a glob may be pointed to in multiple places if references to it are created, and 

therefore it cannot be reallocated with a larger size (because this may require relocating the glob).  This 
means that the glob’s value element must store a pointer to the value rather than the actual value, since the 
value must be reallocated if it changes in size.  This extra layer of indirection allows, for example, string 
buffers that are stored in auto variables to be extended automatically as necessary rather than allowing a 
buffer overrun.  It also allows for certain improvements to efficiency that we describe later. 

3 Improving security 
Automated memory management typically found in more abstract languages has benefits beyond 

saving significant amounts of work.  It can entirely prevent some classes of security holes, such as buffer 
overrun[2] or integer overflow[5][1] bugs. 

3.1 Related work 
General concern over computer security is probably as old as wide-spread use of computers for 

routine tasks. In 1972 James Anderson published a report for the Electronic Systems Division of the US Air 
Force[3]. The primary concerns of his report were security between users of time-sharing systems and 



security between computers on a network. For its age, his report is surprisingly relevant to modern 
computing. Security between users is at least as relevant today as it was in 1972 (even if multiuser 
machinery has perhaps declined), because most operating systems use it to minimize the threat that 
applications pose to each other. For example, a server running Apache and MySQL typically executes them 
with limited privileges as separate users so that if Apache is compromised, MySQL is still protected. The 
importance of security between computers has grown explosively as the Internet has grown, because nearly 
all computers are now connected to the Internet. However, it wasn’t until the 1990s that the industry widely 
acknowledged that the numerous subtle security flaws in software affect everyone, not just organizations 
with especially sensitive secrets such as the US Air Force. Today, security is such a high priority that many 
users will accept severe performance penalties (especially in situations where faster hardware can 
compensate) or use software that is significantly inferior in other ways. On the other hand, there is 
significant successful work on reducing the cost of security, where cost refers to every trade-off – 
performance, maintainability, capabilities, hardware, etc. 

Solutions for minimizing security holes in low-level software are still relatively sparse, and many 
common languages and programs predate wide-spread concerns about security. It wasn’t until 1988 that the 
first documented exploitation of a buffer overrun appeared in the form of the Morris Worm. Interestingly, 
the report from Cornell on this incident[10] mentions mutual trust between computer users up to this point, 
and a desire not to “build walls as high as the sky” to protect against intruders. In today’s environment of 
persistent identity thieves, spammers, bot-nets, pirates, and costly hoaxes it seems strange to look back on a 
time when we were so unconcerned with security. Looking back, it seems obvious that the Morris Worm 
was a disaster waiting to happen, however at a time before online shopping and personal computers for 
everyone raised the stakes, it probably wasn’t unreasonable to assume attackers could be tracked down and 
prosecuted the same way they are with physical security breaches. 

In 1996, the community’s equilibrium was again punctuated by Aleph One. This time, there was 
no turning back.  Computers had permeated the public to the point where too many people were interested 
in breaking security to ignore the issue any longer, and now Smashing The Stack For Fun And Profit[2] 
detailed exactly how to take advantage of unchecked buffers with an explanation most novice hackers 
could understand. This is roughly when intense work started in securing software against dedicated 
attackers and setting up ways of quickly responding as new security holes are discovered. The pattern of 
the buffer overrun programming bug has been astonishingly pervasive and persistent. In spite of 12 years of 
auditing since Aleph One threw open the gates, old buffer overrun bugs are still frequently discovered, and 
new ones are frequently introduced. Simply learning to write bug-free code has proven to be no more 
effective at eliminating buffer overrun bugs than at eliminating bugs in general. 

Starting roughly 2002[5][1], attackers started exploiting integer overflow bugs and soon other non-
control-data attacks[6]. Exploiting these bugs is a more subtle exercise and varies more between programs, 
but as it becomes harder for attackers to find buffer overrun bugs, they will undoubtedly focus more on 
other bugs. 

Many tools have been developed that focus on detecting buffer overrun bugs at run-time. These 
can help developers fix old code and mitigate security risks, but none of the run-time tools can detect a bug 
without a test case that triggers it, and several types of errors are not reported by any of them, including 
integer overflow bugs and buffer overrun bugs within a data structure. Dynamic Buffer Overflow 
Detection[19] surveys some tools in this category including Valgrind[25], CCured[24], CRED[27], ProPolice[29], 
StackGuard[7], TinyCC[30], Chaperon, and Insure++.  Safe Systems Programming Languages[12] surveys 
SafeC[28], CCured[24], Vault[26][31], and Cyclone[23]. 

Cyclone[23] represents good work, but does not provide a complete solution.  It extends C by 
tagging pointers syntactically in different ways to provide bounds-checking.  However, to take full 
advantage of its features requires modifications to the code that are so extensive that it is no harder to 
simply rewrite the code in a new language.  Also, the programmer still has to specify how much memory is 
required, and Cyclone aborts the program when an allocation bug is detected rather abstracting out memory 
allocation entirely.  This protects the system from intrusion, but does not actually fix any bugs.  Often, 
aborting execution is not an acceptable solution.  Further, Cyclone does not address integer overflow bugs.  
Writing code in Cyclone is more confusing than writing code in C because it provides several tags for 
pointers and the programmer needs to know which tag to use in each situation.  Writing code in Pit with 
auto variables is simpler and easier, and actually fixes these bugs.  Cyclone provides optional garbage 
collection, but it uses mark-and-sweep techniques, which exclude many important programs including 
kernel code and time-critical code.  (Pit uses reference-counting garbage collection.)  In Cyclone, the 



programmer must still explicitly calculate the amount of memory required for allocations; automating this 
is a key ingredient of automated memory allocation. 

SafeC[28] similarly protects against buffer overruns with run-time bounds checking, but sacrifices 
performance to avoid code modifications. Vault[26][31] is an entirely new language that does not support 
pointer arithmetic, which makes it unsuitable for kernel code. It also suffers from the disadvantage of 
requiring the programmer to explicitly track memory allocations while restricting pointers so tightly that it 
could have automated memory management entirely. 

SmashGuard[14] presents a solution that is interesting because it is implemented in hardware so it 
requires no modification to application code and incurs no overhead. Its disadvantages are it protects only 
against attacks that target function call return addresses, it requires minor kernel modifications, and of 
course, requires new hardware. 

Transparent Runtime Randomization[17] and Address Obfuscation[4] change the memory layout of 
applications with each execution. This is effective against most attacks because the attacker generally 
cannot predict the behavior of the program closely enough to compromise it. However, this does not protect 
against non-control-data attacks or potential denial-of-service attacks because of program crashes. 
PointGuard[8] is a tool with a different approach but similar results. Rather than rearranging the 
application’s memory layout, it encrypts pointers when they are in memory so that a corrupted pointer will 
be decrypted to an unpredictable address before being accessed. 

The methods that detect an attack in progress and abort the program do not fix the underlying 
problem that there is a bug in the software. Detection is a big improvement, and in most programs, this is a 
“safe” thing to do; although the program behaves in an undesirable way, disaster is averted. In many cases, 
however, aborting a program is dangerous. For example, an abort in the kernel will crash the computer, 
resulting in down-time and often lost data. A trapped bug in a database server can cause equally 
catastrophic results. An attacker may exploit any such bug to deliberately keep a service off-line.  While 
sensitive data is not revealed, the solution is still not good enough. 

Vault and Cyclone extend C but make code more complicated, and more complication typically 
means more errors. It is more desirable to simplify code through abstraction instead, and automated 
memory management is a powerful tool for this. Automated memory management also addresses non-
control-data attacks and integer overflows, which most of the above methods do not consider. However, 
low-level developers have historically avoided languages that provide automated memory management 
because these languages also prevent access to raw pointers, in-line assembly, and necessary optimization 
techniques. (Automated memory allocation includes allocating and freeing memory without explicit 
statements. It also includes extending buffers to avoid overruns and widening integers to avoid overflows.) 

This history suggests the following conclusions. C was designed before security was a major 
concern, and unfortunately in several ways it is impossible to extend C in ways that would solve the 
problem once and for all without significant changes to all the code in need of protection. The best way to 
solve memory allocation bugs is obviously to automate memory allocation, but before low-level developers 
can use automated memory allocation, there needs to be a language that supports both memory allocation 
and access to raw pointers. Such a language not only fixes the allocation bugs but also simplifies much 
code. 

The primary disadvantage to creating a new language is that it requires rewriting code, but no 
solution has been presented yet that can fully protect a program without either unacceptable complexity, 
unacceptable cost to efficiency, or loss of access to raw pointers. Full protection includes protecting buffers 
that are part of a struct, and by design, C allows an array contained in a struct to be overrun, and many 
programs utilize that feature in reasonable ways. 

3.2 Analysis 
Even today, after so much study and work, cutting edge operating systems still have a dismal 

outlook on security. Even if all the bugs were fixed in existing code, new ones are constantly introduced 
with new code. For example, nobody reasonably expects the existing operating systems to ever be free of 
buffer overrun bugs until there are new innovations.  Until then, the industry must settle for staying one 
step ahead of attackers. Operating system code is perhaps the most widely used code, since every computer 
needs it. This probably makes it the most targeted code for malicious attackers and probably the most 
widely audited code as well, but to date, nobody has produced a modern operating system that is free of 
security problems. OpenBSD is probably the operating system with the most proactive approach to security, 



and after many years it is still unusual for them to go even a few months without finding another buffer 
overrun bug[13]. Many good ideas have been developed to improve security for low-level code, and yet all 
have fallen short of complete success, where a successful approach must achieve a high level of confidence 
that the code has no buffer overrun bugs, no integer overflow bugs, and do so without a loss of efficiency. 
In general, when this paper refers to security, the scope is limited to memory allocation, buffer overrun, and 
integer overflow bugs because they are the bugs that this programming language can help prevent, and this 
class of bugs covers the overwhelming majority of security holes.[18][9][8]. 

C is the language of choice for operating system code for good reasons. Low-level programmers 
absolutely need easy access to in-line assembly code for hardware IO and setting special-purpose CPU 
registers. Also, they need to be able to write efficient code, as speed is a major point of competition 
between operating systems; this means that if there are any inefficient high-level features, they need to be 
optional. (C has no such features) A language that requires an interpreter or virtual machine is clearly not 
an option. Perhaps most importantly, programmers need to have a clear idea what the output of the 
compiler will be, because they are working in an environment where many CPU facilities are often 
unavailable.  When the translation is too abstract or layered too deeply, a low-level programmer will often 
become frustrated because the compiler will generate unexpected output that may, for example, interfere 
with the kernel’s memory management, use floating-point facilities when they are not available, or attempt 
to access variables that are temporarily unavailable. Complex tools lead to more of these problems than 
simple tools of equal power.  To address this, source code that does not use auto variables will never be 
translated into machine code that automatically manages memory. Because the extra features have no 
impact on the output unless they are used, Pit works at least as well as C for low-level code. Pit fits all of 
these requirements, and provides a way to choose when to use automatic memory management as well. Pit 
also interacts more easily with C than most other languages. This makes it a good step forward from C with 
little cost. 

Pit is by no means a silver bullet. The advantage is that the programmer gets to choose whether the 
benefit is worth the penalty, rather than being forced to write an entire module in a low-maintenance high-
overhead language such as Perl or in a high-maintenance low-overhead language such as C.  To effectively 
use Pit, a programmer must choose wisely between primitive and auto variables. This requires a balance of 
efficiency and maintainability. As long as a programmer only uses auto variables, there is an absolute 
guarantee that his code will not have these security bugs. However, this guarantee comes at a cost to 
efficiency that is often significant.  On the other hand, every time a programmer uses primitive variables, 
he runs the risk of introducing security bugs. It is well-established that program execution time is related to 
Zipf’s Law. Specifically, a small amount of code accounts for most of the execution time of a program; a 
widely accepted estimate is that 10-20% of the code accounts for 80-90% of the execution time. (The 
sections of code that account for most of the execution time are the “time-critical sections” sections of 
code.) On the other hand, Zipf’s Law does not apply to security. When considering execution time, a 
program can be somewhat less efficient, but a program cannot be somewhat less secure. It’s either secure or 
not, because when an attacker discovers a security hole, typically the whole system is compromised. This 
leads to the conclusion that while all the code in a program must be secure, only about 10-20% of it needs 
to be efficient. It is easy to take advantage this in Pit. If only 10-20% of the code is written using primitive 
variables, then the risk of security holes is eliminated in 80-90% of the code. Additionally, this leaves 
programmers more time to carefully audit the remaining code for security bugs, both because they don’t 
need to audit the other code for these bugs and because the other code was easier and faster to write 
initially. To benefit from this aspect of Pit, a programmer must to be willing to accept this trade-off and use 
it to his advantage.  Most of the existing research for detecting security errors in C code or aborting a C 
program when a buffer overrun occurs is easy to adapt to Pit’s primitive variables. Such an adaptation 
should typically assume auto variables have no such security errors and do the security checking only on 
primitive variables. 

Perl has already proven this approach.  When using Perl, programmers write most of the code in 
Perl, but call C libraries to do the small amount of work that consumes a large amount of CPU time.  The 
Perl code cannot have buffer overrun bugs, (with the bigint extension) integer overflows, double-free errors, 
memory leaks, non-control-data attacks[6], etc.  However, Perl’s approach requires the awkward division of 
a program into high-level and low-level parts and is entirely unusable for writing low-level software, as 
discussed in the introduction. 



3.3 Buffer overrun: C comparison 
Simplifying code reduces human error.  Human error is the only reason new buffer overrun bugs 

are introduced into code.  We will use a short program written in C and a short program written in Pit to 
demonstrate how using Pit’s auto variables simplifies code and eliminates the risk of buffer overruns by 
abstracting the logic for memory allocation out of the written code into the compiler and language library. 

Figure 1 shows a C program that adds pairs of numbers read from standard input. Figure 2 shows 
the same program written in Pit. Notice that in Pit, auto variables can manage all the array sizes and 
memory allocation, thus eliminating any potential for mismanaged string buffers. As shown in Figure 3, 
they can also be managed manually just as easily as in C, with the same risk to security. This is the trade-
off between improving efficiency and improving security and maintainability. 

While Figure 1 has no buffer overrun vulnerabilities, there are several ways they could easily be 
introduced either when the code is modified or as a simple miscalculation when writing it in the first place. 
For example, the wrong size could be passed to fgets(), a pointer error could be introduced where the string 
is parsed with strsep(), or an error could be introduced in the format string passed to printf().  Also notice 
that the code sets an arbitrary limit on the length of an input line, and while it is obviously possible to work 
around this, doing so makes the program much more complex and adds more opportunities for security 
holes. For example, dynamically allocating just enough memory to hold the input can lead to accidentally 
freeing a dynamically allocated chunk of memory twice[6] or misusing realloc().  These are the very errors 
that are commonly found in C code, but never found in Perl code. 

Figure 2 shows the same program, this time written in Pit using auto variables. Notice that neither 
the length of a string nor a pointer into the string are ever used, and the bounds on any indexing operations 
for auto variables are checked at runtime.  All the sizes calculated automatically because memory is 
managed automatically. This means the opportunities for security holes that were present in Figure 1 are 
eliminated. 

Figure 3 is an exercise in optimization, trading confidence in security for efficiency.  It shows the 
same program written in Pit, this time using some primitive variables.  Notice how primitive and auto 
variables easily work together, allowing the programmer to choose precisely what code to optimize for 
efficiency at the risk of security and maintainability, and what code to optimize for security and 
maintainability at the cost of efficiency.  In particular, note that $in is implicitly converted to an auto 
variable when passed to $string.split with little effort on the programmer’s part.  This level of interaction is 
impossible when using two languages such as Perl and C together; instead, the programmer must write two 
separate modules and tie separate functions together.  A programmer can use this, for example, to 
efficiently do time-intensive calculations of plotting a temperature graph from trustworthy input data in the 
same function that parses distrusted inputs strings from a web browser to choose color preferences or add 
decoration. 

 
1.  #include <stdio.h> 
2.  #include <string.h> 
3.   
4.  int main() { 
5.   char in[1024], *inptr, *num; 
6.   int first, second; 
7.   
8.   while(fgets(in, sizeof(in), stdin)) { 
9.    inptr = in; 
10.   
11.    if(! (num = strsep(&inptr, " "))) 
12.     continue; 
13.    first = atoi(num); 
14.   
15.    if(! (num = strsep(&inptr, " "))) 
16.     continue; 
17.    second = atoi(num); 
18.   
19.    printf("Sum is %i\n", first + second); 
20.   } 
21.   return 0; 
22.  } 

Figure 1.  Example program in C. 
 



1.  import io; 
2.  import string; 
3.   
4.  public function(out int $exit_status) $.main = { 
5.   private auto $in, $nums; 
6.   
7.   // $io.stdin is a global symbol.  => is 
8.   // the method-call operator.  readline 
9.   // is the name of the method that reads 
10.   // a line of input.  The line is stored 
11.   // in $in and returned.  Dots are 
12.   // simply part of a symbol's name 
13.   // indicating its namespace. 
14.   while($io.stdin=>readline(ret $in)) { 
15.    // $string.split() is a function that 
16.    // splits $in on " " and stuffs the 
17.    // result into $nums as an array of 
18.    // strings. 
19.    $string.split($in, " ", $nums); 
20.   
21.    // Convert the strings to integers. 
22.    $string.2int($nums(0)); 
23.    $string.2int($nums(1)); 
24.   
25.    // The object $io.stdout has a method 
26.    // called writef that is semantically 
27.    // analogous to C's printf(). 
28.    $io.stdout=>writef( 
29.     "Sum is $sum\n", 
30.     hash { 
31.      "sum", $nums(0) + $nums(1), 
32.     }, 
33.    ); 
34.   } 
35.   
36.   $exit_status = 0; 
37.  } 

Figure 2.  Rewrite of Figure 1 in Pit. 
 

1.  import io; 
2.  import string; 
3.   
4.  public function(out int $exit_status) $.main = { 
5.   private string(char, 1024) $in; 
6.   private int $in_len; 
7.   private auto $nums; 
8.   
9.   loop: { 
10.    // Pit strings are _not_ null- 
11.    // terminated.  $in_len is an in-out 
12.    // parameter.  Going in it's the 
13.    // maximum length of $in and coming out 
14.    // it's the actual length of $in. 
15.    $in_len = sizeof($in); 
16.   
17.    // _p means primitive.  => is the 
18.    // method-call operator. 
19.    $io.stdin=>readline_p($in, $in_len); 
20.   
21.    // readline_p modified $in_len 
22.    unless($in_len) break;  
23.   
24.    // Split works with autos, so this 
25.    // type-cast is required to tell the 
26.    // compiler that the string $in is 
27.    // shorter than 1024 bytes. 
28.    $string.split($in[string(char, $in_len)], " ", $n ums); 
29.   
30.    // Convert the strings to integers. 
31.    $string.2int($nums(0)); 



32.    $string.2int($nums(1)); 
33.   
34.    $io.stdout=>writef( 
35.     "Sum is $sum\n", 
36.     hash { 
37.      "sum", $nums(0) + $nums(1), 
38.     }, 
39.    ); 
40.   } 
41.   
42.   $exit_status = 0; 
43.  } 

Figure 3.  Some speed optimizations to Figure 2. 
 

3.4 Integer overflow 
Integer overflow bugs are more insidious and are a much newer problem than buffer overrun bugs 

that have not gained notice until around 2002.  The pattern of this bug is that the program will behave 
unexpectedly when an integer’s value overflows during arithmetic.  These overflows happen in two 
common situations, either while adding two positive or two negative numbers (or subtracting equivalently) 
or while multiplying.  When adding a positive number to a negative number there is no problem, and when 
dividing there is no problem.  (Code that calculates powers for memory allocation is much more rare, 
however that does not entirely exempt power calculations from concern.  Multiplication is bad enough for 
our discussion.) 

First, consider adding.  Adding two positive numbers with an overflow produces a negative result.  
An easy example is overflowing while incrementing.  While iterating over the characters in a buffer, if the 
counter variable overflows, the code will accidentally follow a negative offset into the buffer.  This 
particular situation isn’t terribly difficult to handle in a number of ways, but extending the example into 
multiplication shows a far more severe problem. 

The resulting sign of a multiplication is not a reliable indicator of overflow.  Multiplying two 
fairly small positive values may produce an overflow so large that the result wraps around more than once, 
producing a positive result.  For example, multiplying 65536 by 65537 using 32-bit integers results in a 
positive value much smaller than expected.  Multiplication is used in calculating the memory address of 
array elements.  This is the root of the problem in the following example. 

Just last year (in 2008), CUPS[20] announced a patch[21] for an integer-overflow bug leading to 
remote exploitation and local privilege escalation[22].  The problem was that the result of multiplying two 
integers and passing the result to calloc() could result in an allocation smaller than expected.  In subsequent 
code, iterating over this allocation results in overrunning the allocation even though the counter variable 
stays within reasonable boundaries.  If calloc() instead used an unbounded integer for its parameter there is 
no concern at all.  This would allow calloc() to simply return an error indicating that it cannot allocate the 
requested amount of memory.  The solution for this C code is an awkward check to be sure each input 
variable is not greater than 32767.  Additionally, there is nothing to indicate to code maintainers that part of 
the reason for this bound is the size of the type lchar_t.  Note that this class of problems and this solution 
can be extended to most functions that write to caller-allocated buffers, such as read(), fread(), recv(), 
fgets(), etc. 

4 Future work 
The first work to do next is to write a Pit compiler in Pit.  This will both demonstrate that Pit can 

be self-hosting and improve on the current compiler, which has an overly simple design with no 
optimizations.  It was written for a single purpose, which is to bootstrap the compiler written in Pit. 

Then the compiler needs some optimization.  Most of the optimization techniques used by C 
compilers should be useful in Pit.  There are additional Pit-specific optimizations.  For example, a primitive 
variable can often be substituted for an auto variable as described above.  When work on optimization is 
complete, it is reasonable to expect Pit programs that use only primitive variables to match the speed of 
equivalent C programs.  Pit programs will always be faster than equivalent Perl programs because when a 
program written in Perl executes, Perl first compiles it into byte-code, then executes it in a virtual machine.  
Pit programs will execute significantly faster, even if they only use auto variables, because the code is 



already compiled at run-time and does not require a virtual machine.  This places the performance of Pit 
programs, at worst, somewhere close to C programs and better than Perl programs. 

Next, there needs to be some study of the difference in speed between primitive and auto variables, 
specifically to determine how high the performance penalty is for using auto variables. This will provide 
insight into when it’s appropriate to use primitive or auto variables when weighing the trade-off of a 
program’s performance.  Some rough study on this could be done today on toy examples by emulating the 
logic for auto variables in C.  The examples would be lengthy, inconvenient, and somewhat inconclusive, 
but with care they could serve the purpose of giving a rough estimate of the difference in speed between the 
types of variables. 

A later useful branch of work may be to create a compiler that translates Pit code into a byte-code 
that is suitable for a virtual machine. Like Java, this would allow programs to be portable between CPU 
architectures. It is possible to do this in a way that allows many programs to be compiled natively or for the 
virtual machine without modification, except programs that use inline assembly code. 

Another possible branch of work may be adapting existing research on checking C code for 
security bugs. While this is obviated for code that exclusively uses auto variables, this research may still be 
useful to minimize security risks in code that uses primitive variables. 

5 Conclusion 
Defining a new low-level language with specific features for memory management is a promising 

approach to improving the quality of low-level software.  So far, research in the area of buffer overruns and 
integer overflows have focused on either detecting these bugs or adding features to C that specifically deal 
with these problems.  Thus far, these approaches are either incomplete or make software much harder to 
write.  Pondering the larger point of view of using automated memory management, which is a nonspecific 
tool that’s useful in many ways for simplifying code in general, reveals a new point of view for preventing 
these problems. 

Pit avoids infrastructure that usually deters programmers from choosing other languages for low-
level code because of high overhead or unpredictable behavior, such as an interpreter, a virtual machine, or 
a mark-and-sweep garbage collector.  There is no performance penalty to using Pit when the programmer 
chooses to use only primitive variables.  When the programmer chooses to use auto variables, there is a 
cost (how much is yet to be seen). However because of the relation of Zipf’s Law to execution time, the 
penalty of automated memory allocation will not be important in most of the code. When efficiency is 
necessary, Pit provides an exceptionally easy way to interface auto variables with optimized code. Perhaps 
the biggest advantage is Pit’s ability to describe time-critical sections in efficient terms while protecting the 
rest of the code from buffer overruns, integer overflow bugs, non-control-data attacks, double-free bugs, 
and other memory allocation bugs.  These considerations make Pit a superior language for low-level 
programming. 
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