Using Pit to Improve Security in Low-Level Programs
Leif Pedersen <bilbo@hobbiton.org>
Hassan Reza <reza@cs.und.edu>
University of North Dakota
School of Aerospace Sciences
Department of Computer Science
Streibel Hall Room 201
3950 Campus Road Stop 9015
Grand Forks, ND 58202-9015 USA

Abstract. Pit**! js a new language for low-level programming, desijto be a self-
hosting alternative to C. The novelty is it sugp@utomated memory management without excluding
manual memory management, and without hindering kegtures associated with low-level
programming, such as raw pointers, inline assemdie, and precise control over execution.

This paper presents Pit as a language, then exanfioe Pit's approach to memory
allocation can be used to significantly increasegécurity of low-level programs. Automatic memory
allocation is a useful tool of abstraction in masifuations. Since Pit provides this tool without
hindering low-level programming, it allows autondt@emory management to be used in programs
where it previously could not be used, such asdlernSpecifically, this tool of abstraction carsias
the programmer significantly in writing low-levebde with fewer security problems caused by buffer
overrun or integer overflow bugs by reducing thenber of opportunities for such bugs in areas of
code that do not need the precision of manual mgnafiocation. Existing solutions, such as
Cyclonéd® add various ways of checking bounds, but haverajor disadvantages: they require extra
work from the programmer, and they detect but dofixomemory allocation bugs. Pit's approach
simplifies what the programmer writes, making coutere understandable.

1 Introduction

General-purpose programming languages, referringnguages designed for writing wide ranges
of applications such as C, Perl, and their relativmay be characterized by their style of memory
management and level of abstraction. As a genemadlf less abstract languages require the programeme
explicitty code memory management logic and statemexpress CPU instructions more directly with
greater detail, while more abstract languages redass attention to memory management and regdresen
the intent of the program more directly with lestaill. There are, of course, many points of view on
classifying languages, but for this discussion,ittieresting trade-offs between general-purposguages
are manual or automatic memory management, reginege@PU instructions directly or the intent of the
algorithms, and representing more detail or legaildé-or example, C represents the CPU’s instomati
almost directly and provides no automated memorpagament and requires more detail in the code,
however Perl manages memory entirely automaticallg usually represents complex algorithms in less
code. The cost to using Perl is, of course, efficye in many cases, Perl code is so slow it canrest the
user’s requirements. This pattern of trade-ofég|frently applies to comparisons between a low-landla
high-level language. This brief discussion may sdenimply a trade-off between automated memory
management and expression of fine-grained detaileler even if this connection holds (and it mat) ito
does not exclude the possibility of creating a leage that can express both sides of the tradehoffs
adjacent statements. This duality is preciselytv#iimplemented.

Unfortunately, most software does not divide astlpess most languages into “low-level” and
“high-level” where, for example, low-level appli@as cannot afford the cost incurred by high-level
languages and high-level applications cannot affleedcost of extra effort in development time imedrby
low-level languages. Most nontrivial software lsasne code that does not need to execute efficiantly
therefore would benefit from a high-level languagel some code that must execute quickly or forrothe
reasons cannot afford the costs of a high-levejuage. Graphical programs are an easy examplasf t
code that deals with individual pixels and polygdfos rendering images and animations benefits

significantly from optimizing at the level of inddual CPU instructions, while code that directg&aruser
interface widgets such as window placement andbstbenefits far more from greater abstraction.

It's possible to bridge this gap by using two laages to write a program, but this approach has
disadvantages. One problem is it's difficult fom@dule written in one language to access datadstiore
memory by a module written in a different langudgeause most languages store data in memory quite
differently from each other. Perhaps more impolyanising two languages to implement the software
creates an artificial boundary in the logic basedte capabilities of the two languages rather thased
on a natural separation of concern that's converi@rthe program’s design. A better solution isuse a
language that allows both approaches and allovesdiained control over when each approach is applie
Pit uses variable declarations to determine whigbr@ach to use, which allows convenient yet precise
control.

Pit is a compiled language derived primarily from \@hile it is designed to be familiar to C
programmers, the languages are different enougiodimg style that it will probably always be a mahu
task to translate between C code and Pit codeniayathat produces reasonably understandable code.
novelty is that it simultaneously supports the able types found in C, called “primitive variablesfid
another class of variables called “auto variablesiito variables are declared syntactically using th
keyword “auto” in place of the type specificatigkuto variables are similar in many respects toalzalgs
implemented by Perl; in this regard, Pit is secoihdderived from Perl. They are dynamically typadd
manage memory automatically. The programmer cawosghto write the entire program using only auto
variables, only primitive variables, or a combioatiof both. This allows the programmer to choasade
automated or manual memory management with evetighla declaration. Thus, the programmer can
write some code that has all the characteristic€ afode by avoiding auto variables, and in the same
function write more code that has all the benefitsautomated memory management and dynamically
typed variables by using auto variables.

Pit (named simply for Devpit.org) began as a clamsr project to implement a C library for
implementing dynamically-typed variables in C, whieventually developed into Pit's concept of auto
variables. Its API used a single struct point@etjor variables which could store any type of ealihe
struct was opaque to the programmer, but indiceteether it contained an integer, string, hash, &ie
analogized this variable type to a Perl scalaraidei. The API provided functions for the programitoe
call for each operation, such as assign, add,eefer, dereference, etc. Much like with Perl ssaleach
variable carried a reference counter, which, fanegle, incremented when storing the variable iargdr
structure. The programmer had the responsibilitycalling a function which would decrement this
reference counter or free the variable (recursietymultilevel data structures) every place exiut
could exit the scope containing the variable. Weasn't bad as far as complex data structure méatipn
in C goes, but it was far too clumsy for managiimgpde strings; nobody writing “real” software would
want to use this for simple things. We finally estyned this concept as a new language. Thisevasad
advantages. Most importantly, it simplifies thencept of auto variables enough that they are etsiese
than primitive variables, which are still as eagyuse as C’s variables. now the compiler automtica
inserts the calls to decrement the reference couftee these variables; this tips the balance,imgait
easier to use than manual allocation. Furthercowdd now add several important features missiogfr
other low-level languages such as exceptions antkgpaces. Also, the programmer can write opesation
on the new variable type with symbolic operatorshie same way as traditional variables, rather #ean
function calls. In adding these features, we kbptlanguage within constraints that make suit&mehe
lowest-level programs traditionally written in Gpecially kernels. To be sure, other languagee tzase
features, but none of them fit within constrairitede constraints. During this work, we studied svdnat
these improvements could be used for better sgcpdtrtability, general maintainability, etc in leavel
programs.

The compiler implements auto variables by inserfungction calls to a supporting library. Each
operation translates into a function call, anch#terts additional calls for incrementing and de&weting
reference counts for garbage collection. It alangparently inserts calls to this library for corivey from
a primitive variable type to an auto variable areviversa, making it easy to assign a value fromnaitpve
variable to an auto variable and vice versa. Rsel§hosting, meaning that it can express its campiler
tools and supporting libraries with no tools writtin other languages (although this work is in pesg).

To accomplish this, the supporting language libresgs primitive variables to construct the datacstres
that store information for auto variables.

Pit is designed to be suitable for (but not limiteyllow-level programming, such as for operating
system kernels, device drivers, system librari¢s, €his is perhaps the class of software that éstm
starved for improvements in languages because imps¢mentations of recent languages require aalirtu
machine, prevent manual memory management, and Hamé a way to access assembler code. Pit can
interact with C code reasonably easily, which matkassitioning or interacting with an existing prof
easier. All C variables map directly to primitivariables in Pit, and the calling convention fordtions is
close enough that a simple wrapper function carkweoound the differences.

2 Examples of Pit syntax and translation to assembly

If auto variables could only store simple valueschs as integers, floats, and references, they
would obviously not be particularly useful. Thpwwer becomes apparent when they are compounded to
create a complex data structure. Creating a congdéa structure using auto variables is triviab do so,
simply assign an array or hash to an element afrigy or hash, as follows.

private auto $root;

$root(0) = hash{};
$root(0)("key0") ="
$root(0)("keyl") ="
$root(1) = hash{};
$root(1)("key0") ="
$root(1)("keyl") ="

BooNoar~wNE

/I Declare $root as a local v

$root = array{}; // Assign an empty array to i

/I Assign an empty hash to th
array element 0, hash element k
array element 0, hash element k

array element 1, hash element k
array element 1, hash element k

ariable

t

e zeroth element
ey0";

eyl";

ey0";
eyl";

Notice how concise this code is because there iseed to explicitly tell the compiler how much
memory to allocate for the array or hash tablesemito free the memory, or what the type of eacheva.
On line 2, we create an array and assign it to tpnebich dynamically assumes the array type. The
memory for the array is initially allocated withsee of zero, and later it is extended as necessanylines
3 and 6, we create hashes and assign them to elewfethe array $root. Since the array was preshou
too small to hold the elements, it is automaticekyended to a length of one, and then to a leafjtivo.
Similarly, the elements in the hashes need nott exéfore a value is assigned; they are created
automatically as necessary. For comparison, lsesimiilar logic using only primitive variables.

$root(0)("key0") ="
$root(0)("keyl") ="
$root(1)("key0") ="
$root(1)("keyl") ="

NooasrwbE

i:;.rivate array(struct("key0" array(char, 64), "keyl1"

array element 0, hash element k
array element 0, hash element k
array element 1, hash element k
array element 1, hash element k

array(char, 64)), 2) $root;
ey0";
eyl";
ey0";
eyl";

Notice that unless we invest a lot of time and codenanually allocating the memory with a
dynamic size, we lose the ability to extend theyadynamically. Also, the structs are not extelest all,
and there are several opportunities for a buffegrmn vulnerability if the input strings come from
distrusted source. These are the same problemhsith@ code must deal with. However, the striking
similarity between the two examples shows two thinfjrst, that choosing between the two approaches
easy for the programmer; second, if the programumses the above implementation, an optimizer will be
able to eliminate much of the inefficiency by cortirg patterns found in the first example into pats

shown in the secon

d example when possible.

On the topic of efficiency, the array extensiomd as time-consuming as it looks. Behind the
scenes, the amount of memory reserved for the ataays at enough for four elements and is doubled
every time it runs out of space. This reducesatheunt of time spent copying the array to a newatioa
in memory. While this is logically irrelevant tbe program’s execution, it reduces the time coniplef
the extension from Ofjito O(n * log(n)), where n is the number of tinoree element is added to the array.
Additionally, in many cases an optimizer could oetor guess how many elements are needed and pre-
allocate the necessary amount of memory. In thée cit would not be hard for an optimizer to tfarms
the entire example into primitive variables by gsien array of structs. While beyond the scopewf o

current work, an optimizer will eventually be anpiomtant tool in mitigating the cost of using auto

variables instead of primitive variables.

Above, we mentioned that auto variables are implaete by translating every operation into a
function call to a supporting language library. fegprecisely, for each auto variable, the compiler
allocates a pointer where the variable’s value @oatherwise be stored; then each operation on it is
translated into a function call so that a run-tiibeary can manage its memory, type, value, refatpatc
appropriately. For example, if an auto variabldeslared in a function, the compiler allocate®mter in
the stack frame and a function call is insertedltocate a glob of memory on the heap with theahit
value of undef (undef is described later). Furibgerations on the variable result in the compiiserting
more function calls. At the end of the functionpther function call is inserted to decrement eato
variable’s ref-count or free it if appropriate. i$hvay, it is valid to store a reference to theoawdriable
outside the function, since the glob need not resnég be freed immediately when the function resur
Here is the exact translation for part of the exangbove into intermediate code for a 64-bit maghin

1. /I "$root" above is translated into "%base - 64b" h
2. [/l allocated in the stack frame. After each group
3. [/l stack is back to its initial state.

4.

5. /I 1. private auto $root;

6. stack_alloc 64b; /I Subtract 8

7. /I the stack p

8. call $lang.auto.new.undef; /I Constructs

9. /I value undef

10. store <ptr> [%base - 64b], <ptr>; // Pops the po
11. /l and stores

12.

13. /1 2. $root = array{};
14. stack_alloc 64b;

15. call $lang.auto.new.array; /I Constructs
16. /I value of an

17. store <ptr>, <ptr> [%base - 64b]; // Pushes the
18. call $lang.auto.refcount_inc; /I Inc ref-cou
19. /I operator ca

20. /I ref-count o

21. call $lang.auto.binop.assign; /I Perform the
22. Il result (a't

23. Il return valu

24, /l'in the seco

25. stack_free 64b; /I Discard poi

26. call $lang.auto.refcount_dec; /I Free the te
27. stack_free 64b; /I Discard poi

ere, which was already
of statements, the

bytes (64 bits) from
ointer

a new auto with the
and ref-count of 1
inter to the new auto
it at %base - 64b

a new auto with the
empty array

location of $root

nt because a binary

Il decrements the

f both inputs
assignment, store the
emp auto holding the
e of the assignment)
nd parameter’s position
nter to $root

mp auto

nter to the temp auto

Although the translation looks somewhat obfuscaied no more so than the assembly output
from a conventional C compiler, and this is easypotifor a compiler to generate.

Notice that since a glob may be pointed to in rplétiplaces if references to it are created, and
therefore it cannot be reallocated with a largee gbecause this may require relocating the glolis
means that the glob’s value element must stordrdgrdo the value rather than the actual valug;esthe
value must be reallocated if it changes in sizéis Extra layer of indirection allows, for exampstsing
buffers that are stored in auto variables to bereéd automatically as necessary rather than altpwi
buffer overrun. It also allows for certain improvents to efficiency that we describe later.

3 Improving security

Automated memory management typically found in madystract languages has benefits beyond
saving significant amounts of work. It can engirpfevent some classes of security holes, suchufdsrb

overrut® or integer overflo’™ bugs.

3.1 Related work

General concern over computer security is probablyld as wide-spread use of computers for
routine tasks. In 1972 James Anderson publisheg@rt for the Electronic Systems Division of the Ai
Forcé®. The primary concerns of his report were secunégween users of time-sharing systems and

security between computers on a network. For its, dgs report is surprisingly relevant to modern
computing. Security between users is at least Evast today as it was in 1972 (even if multiuser
machinery has perhaps declined), because most timgeisystems use it to minimize the threat that
applications pose to each other. For example,\e&eseunning Apache and MySQL typically executesihe
with limited privileges as separate users so thApache is compromised, MySQL is still protectathe
importance of security between computers has grexptosively as the Internet has grown, becausdynear
all computers are now connected to the Internetvéver, it wasn’t until the 1990s that the industigely
acknowledged that the numerous subtle securitysflamsoftware affect everyone, not just organizatio
with especially sensitive secrets such as the UJF-dice. Today, security is such a high prioritgttmany
users will accept severe performance penaltiese@ly in situations where faster hardware can
compensate) or use software that is significantfgrior in other ways. On the other hand, there is
significant successful work on reducing the costseturity, where cost refers to every trade-off —
performance, maintainability, capabilities, hardeyastc.

Solutions for minimizing security holes in low-ldaoftware are still relatively sparse, and many
common languages and programs predate wide-sposaerms about security. It wasn’t until 1988 thnet t
first documented exploitation of a buffer overryppaared in the form of the Morris Worm. Interestyng
the report from Cornell on this incidéft mentions mutual trust between computer users uhisopoint,
and a desire not to “build walls as high as the s&yprotect against intruders. In today’s enviramof
persistent identity thieves, spammers, bot-netatgs, and costly hoaxes it seems strange to lack dn a
time when we were so unconcerned with security.kirgp back, it seems obvious that the Morris Worm
was a disaster waiting to happen, however at a befere online shopping and personal computers for
everyone raised the stakes, it probably wasn’tasueable to assume attackers could be tracked dod/n
prosecuted the same way they are with physicalritgtweaches.

In 1996, the community’s equilibrium was again puated by Aleph One. This time, there was
no turning back. Computers had permeated the ptdlihe point where too many people were intedeste
in breaking security to ignore the issue any longexd now Smashing The Stack For Fun And Pfofit
detailed exactly how to take advantage of unchedk&fers with an explanation most novice hackers
could understand. This is roughly when intense wstdrted in securing software against dedicated
attackers and setting up ways of quickly respondisgew security holes are discovered. The pattern
the buffer overrun programming bug has been adtongl/ pervasive and persistent. In spite of 12ryed
auditing since Aleph One threw open the gatespafter overrun bugs are still frequently discoveradd
new ones are frequently introduced. Simply learrtimgvrite bug-free code has proven to be no more
effective at eliminating buffer overrun bugs thareléminating bugs in general.

Starting roughly 20031, attackers started exploiting integer overflow $amd soon other non-
control-data attack$. Exploiting these bugs is a more subtle exercigb\aries more between programs,
but as it becomes harder for attackers to finddyuffverrun bugs, they will undoubtedly focus more o
other bugs.

Many tools have been developed that focus on detebuffer overrun bugs at run-time. These
can help developers fix old code and mitigate dgcrisks, but none of the run-time tools can detebug
without a test case that triggers it, and seveqatg of errors are not reported by any of themluding
integer overflow bugs and buffer overrun bugs witld data structure. Dynamic Buffer Overflow
Detectiof® surveys some tools in this category including viadj®, cCure&”, CREB?", ProPolic&”,
StackGuart, TinycG®, Chaperon, and Insure++. Safe Systems Programimnguages? surveys
Safed®®, ccured”, vaulf®™ and Cyclong®.

Cycloné® represents good work, but does not provide a cetemolution. It extends C by
tagging pointers syntactically in different ways poovide bounds-checking. However, to take full
advantage of its features requires modificationshtd code that are so extensive that it is no mai@e
simply rewrite the code in a new language. Alke,programmer still has to specify how much meni®ry
required, and Cyclone aborts the program whenlanaion bug is detected rather abstracting out argm
allocation entirely. This protects the system fromtrusion, but does not actually fix any bugs. tebf
aborting execution is not an acceptable solutiBarther, Cyclone does not address integer overflogs.
Writing code in Cyclone is more confusing than imgt code in C because it provides several tags for
pointers and the programmer needs to know whichtdagse in each situation. Writing code in Pithwit
auto variables is simpler and easier, and actiedgs these bugs. Cyclone provides optional gabag
collection, but it uses mark-and-sweep technigugsch exclude many important programs including
kernel code and time-critical code. (Pit uses rezfee-counting garbage collection.) In Cyclones th

programmer must still explicitly calculate the ambof memory required for allocations; automatihist
is a key ingredient of automated memory allocation.

Safe® similarly protects against buffer overruns witmtime bounds checking, but sacrifices
performance to avoid code modifications. V&It is an entirely new language that does not support
pointer arithmetic, which makes it unsuitable farhel code. It also suffers from the disadvantafje o
requiring the programmer to explicitly track memaiiocations while restricting pointers so tighthat it
could have automated memory management entirely.

SmashGuarl! presents a solution that is interesting becauieiibplemented in hardware so it
requires no modification to application code anclirs no overhead. Its disadvantages are it protedys
against attacks that target function call returdregses, it requires minor kernel modifications] af
course, requires new hardware.

Transparent Runtime Randomizafféhand Address Obfuscati$hchange the memory layout of
applications with each execution. This is effectagainst most attacks because the attacker generall
cannot predict the behavior of the program closelyugh to compromise it. However, this does notggto
against non-control-data attacks or potential desfigervice attacks because of program crashes.
PointGuard! is a tool with a different approach but similarsults. Rather than rearranging the
application’s memory layout, it encrypts pointersen they are in memory so that a corrupted pointier
be decrypted to an unpredictable address beforg lagicessed.

The methods that detect an attack in progress bod the program do not fix the underlying
problem that there is a bug in the software. Daiads a big improvement, and in most programs ihia
“safe” thing to do; although the program behavearirundesirable way, disaster is averted. In masgs,
however, aborting a program is dangerous. For elgnam abort in the kernel will crash the computer,
resulting in down-time and often lost data. A tragpbug in a database server can cause equally
catastrophic results. An attacker may exploit amghsbug to deliberately keep a service off-line hik/
sensitive data is not revealed, the solution Isrstt good enough.

Vault and Cyclone extend C but make code more coatpld, and more complication typically
means more errors. It is more desirable to simpdifgle through abstraction instead, and automated
memory management is a powerful tool for this. Awutted memory management also addresses non-
control-data attacks and integer overflows, whiobstrof the above methods do not consider. However,
low-level developers have historically avoided laages that provide automated memory management
because these languages also prevent access pnaters, in-line assembly, and necessary optinozat
techniques. (Automated memory allocation includéecating and freeing memory without explicit
statements. It also includes extending buffers/tidaoverruns and widening integers to avoid owavl.)

This history suggests the following conclusionsw@s designed before security was a major
concern, and unfortunately in several ways it ipdssible to extend C in ways that would solve the
problem once and for all without significant chasge all the code in need of protection. The besf to
solve memory allocation bugs is obviously to auttemaemory allocation, but before low-level develgpe
can use automated memory allocation, there neelle tolanguage that supports both memory allocation
and access to raw pointers. Such a language nyptfigek the allocation bugs but also simplifies imuc
code.

The primary disadvantage to creating a new langusdkeat it requires rewriting code, but no
solution has been presented yet that can fullyegtod program without either unacceptable compjexit
unacceptable cost to efficiency, or loss of acéesaw pointers. Full protection includes protegtivuffers
that are part of a struct, and by design, C allawsarray contained in a struct to be overrun, aadym
programs utilize that feature in reasonable ways.

3.2 Analysis

Even today, after so much study and work, cuttidgeeoperating systems still have a dismal
outlook on security. Even if all the bugs were fixa existing code, new ones are constantly intcedu
with new code. For example, nobody reasonably dxphe existing operating systems to ever be ffee o
buffer overrun bugs until there are new innovatiotdntil then, the industry must settle for stayioige
step ahead of attackers. Operating system coderlimps the most widely used code, since every ctanpu
needs it. This probably makes it the most targemde for malicious attackers and probably the most
widely audited code as well, but to date, nobody peoduced a modern operating system that is free o
security problems. OpenBSD is probably the opegadiystem with the most proactive approach to siguri

and after many years it is still unusual for theagb even a few months without finding another éuff
overrun buf¥. Many good ideas have been developed to improwerisg for low-level code, and yet all
have fallen short of complete success, where aessd approach must achieve a high level of cenfi¢
that the code has no buffer overrun bugs, no imtegerflow bugs, and do so without a loss of eéfiay.
In general, when this paper refers to securitysttape is limited to memory allocation, buffer ower, and
integer overflow bugs because they are the bugdhtsaprogramming language can help prevent, hisd t
class of bugs covers the overwhelming majorityesfisity holed™®°1,

C is the language of choice for operating systededor good reasons. Low-level programmers
absolutely need easy access to in-line assemblg tmdhardware 10 and setting special-purpose CPU
registers. Also, they need to be able to writeciffit code, as speed is a major point of compatitio
between operating systems; this means that if thereany inefficient high-level features, they neade
optional. (C has no such features) A language ridiires an interpreter or virtual machine is dieaot
an option. Perhaps most importantly, programmerdrn® have a clear idea what the output of the
compiler will be, because they are working in arviemment where many CPU facilities are often
unavailable. When the translation is too abstoadayered too deeply, a low-level programmer wften
become frustrated because the compiler will geranaexpected output that may, for example, interfer
with the kernel’s memory management, use floatiagMpfacilities when they are not available, oeatpt
to access variables that are temporarily unavalaBbmplex tools lead to more of these problems tha
simple tools of equal power. To address this, @wode that does not use auto variables will nbeer
translated into machine code that automatically agas memory. Because the extra features have no
impact on the output unless they are used, Pit svatkeast as well as C for low-level code. Pg &tl of
these requirements, and provides a way to choosa ¥huse automatic memory management as well. Pit
also interacts more easily with C than most otaegliages. This makes it a good step forward fromitiC
little cost.

Pit is by no means a silver bullet. The advantaghat the programmer gets to choose whether the
benefit is worth the penalty, rather than beingéadrto write an entire module in a low-maintenalicg-
overhead language such as Perl or in a high-mantenlow-overhead language such as C. To effégtive
use Pit, a programmer must choose wisely betweiamtiwe and auto variables. This requires a balasfce
efficiency and maintainability. As long as a pragraer only uses auto variables, there is an absolute
guarantee that his code will not have these segcbrigs. However, this guarantee comes at a cost to
efficiency that is often significant. On the otheand, every time a programmer uses primitive deR
he runs the risk of introducing security bugsslimvell-established that program execution timesiated to
Zipf's Law. Specifically, a small amount of codecaants for most of the execution time of a program;
widely accepted estimate is that 10-20% of the cacmunts for 80-90% of the execution time. (The
sections of code that account for most of the etkacuime are the “time-critical sections” sectioof
code.) On the other hand, Zipf's Law does not afplysecurity. When considering execution time, a
program can be somewhat less efficient, but a pragrannot be somewhat less secure. It's eitheresecu
not, because when an attacker discovers a setuligy typically the whole system is compromisedisTh
leads to the conclusion that while all the coda jprogram must be secure, only about 10-20% cfedn
to be efficient. It is easy to take advantage ihiBit. If only 10-20% of the code is written usipgmitive
variables, then the risk of security holes is atiated in 80-90% of the code. Additionally, thisJes
programmers more time to carefully audit the reimgircode for security bugs, both because they don’t
need to audit the other code for these bugs andulsecthe other code was easier and faster to write
initially. To benefit from this aspect of Pit, aggrammer must to be willing to accept this tradieanid use
it to his advantage. Most of the existing resedorhdetecting security errors in C code or abgrtinC
program when a buffer overrun occurs is easy tgtata Pit's primitive variables. Such an adaptation
should typically assume auto variables have no sedurity errors and do the security checking amly
primitive variables.

Perl has already proven this approach. When uBery programmers write most of the code in
Perl, but call C libraries to do the small amouhtvork that consumes a large amount of CPU timbae T
Perl code cannot have buffer overrun bugs, (withitigint extension) integer overflows, double-fesgors,
memory leaks, non-control-data attdfketc. However, Perl's approach requires the awttwiavision of
a program into high-level and low-level parts aackntirely unusable for writing low-level softwaias
discussed in the introduction.

3.3 Buffer overrun: C comparison

Simplifying code reduces human error. Human eigdhe only reason new buffer overrun bugs
are introduced into code. We will use a short pogwritten in C and a short program written in @it
demonstrate how using Pit's auto variables singdiftode and eliminates the risk of buffer overrops
abstracting the logic for memory allocation outted written code into the compiler and languageati

Figure 1 shows a C program that adds pairs of nientead from standard input. Figure 2 shows
the same program written in Pit. Notice that in, Riito variables can manage all the array sizes and
memory allocation, thus eliminating any potentiat mismanaged string buffers. As shown in Figure 3,
they can also be managed manually just as easily @swith the same risk to security. This is thede-
off between improving efficiency and improving setuand maintainability.

While Figure 1 has no buffer overrun vulnerabititi¢there are several ways they could easily be
introduced either when the code is modified or asrgle miscalculation when writing it in the firgkace.
For example, the wrong size could be passed ts(iget pointer error could be introduced wheresthiag
is parsed with strsep(), or an error could be thiaed in the format string passed to printf(). cAfetice
that the code sets an arbitrary limit on the lerajthn input line, and while it is obviously podsitho work
around this, doing so makes the program much moneplex and adds more opportunities for security
holes. For example, dynamically allocating just wgto memory to hold the input can lead to accidéntal
freeing a dynamically allocated chunk of memorycel or misusing realloc(). These are the very errors
that are commonly found in C code, but never fomnEerl code.

Figure 2 shows the same program, this time writteRit using auto variables. Notice that neither
the length of a string nor a pointer into the grare ever used, and the bounds on any indexingtqes
for auto variables are checked at runtime. All #iees calculated automatically because memory is
managed automatically. This means the opportunftiesecurity holes that were present in Figurad a
eliminated.

Figure 3 is an exercise in optimization, tradingfadence in security for efficiency. It shows the
same program written in Pit, this time using somienjive variables. Notice how primitive and auto
variables easily work together, allowing the progneer to choose precisely what code to optimize for
efficiency at the risk of security and maintaindpjl and what code to optimize for security and
maintainability at the cost of efficiency. In gadiar, note that $in is implicitly converted to auto
variable when passed to $string.split with littfeoet on the programmer’s part. This level of irgtetion is
impossible when using two languages such as PédrCatogether; instead, the programmer must write tw
separate modules and tie separate functions tagetide programmer can use this, for example, to
efficiently do time-intensive calculations of piotj a temperature graph from trustworthy input datthe
same function that parses distrusted inputs stiirgga a web browser to choose color preferencesddr
decoration.

1. #include <stdio.h>

2. #include <string.h>

3.

4. intmain() {

5. char in[1024], *inptr, *num;

6. int first, second;

7.

8. while(fgets(in, sizeof(in), stdin)) {

9. inptr = in;

10.

11. if(! (num = strsep(&inptr, " "))
12. continue;

13. first = atoi(num);

14.

15. if(! (num = strsep(&inptr, " "))
16. continue;

17. second = atoi(num);

18.

19. printf("Sum is %i\n", first + second);
20. }

21. return O;

22. }

Figurel. Example programin C.

import io;
import string;

public function(out int $exit_status) $.main = {
private auto $in, $nums;

/I $io.stdin is a global symbol. =>is
/l the method-call operator. readline
/I is the name of the method that reads

COoNOUAWNE

10. /I aline of input. The line is stored

11. /'in $in and returned. Dots are

12. /I simply part of a symbol's name

13. /l indicating its namespace.

14. while($io.stdin=>readline(ret $in)) {

15. /I $string.split() is a function that
16. /I splits $in on " " and stuffs the
17. /I result into $nums as an array of
18. /] strings.

19. $string.split($in, " ", $nums);

20.

21. /I Convert the strings to integers.
22. $string.2int($nums(0));

23. $string.2int($nums(1));

24.

25. /I The object $io.stdout has a method
26. /I called writef that is semantically
27. /I analogous to C's printf().

28. $io.stdout=>writef(

29. "Sum is $sum\n”,

30. hash {

31. "sum", $nums(0) + $nums(1),
32. h

33.);

34, }

35.

36. $exit_status = 0;

37. }

Figure2. Rewriteof Figurelin Pit.

1. importio;

2. import string;

3.

4. public function(out int $exit_status) $.main = {

5. private string(char, 1024) $in;

6. private int $in_len;

7. private auto $nums;

8.

9. loop: {

10. /I Pit strings are _not_ null-

11. /I terminated. $in_len is an in-out
12. /I parameter. Going in it's the

13. /I maximum length of $in and coming out
14, /I it's the actual length of $in.

15. $in_len = sizeof($in);

16.

17. /I _p means primitive. => is the
18. /I method-call operator.

19. $io.stdin=>readline_p($in, $in_len);
20.

21. /I readline_p modified $in_len

22. unless($in_len) break;

23.

24, /I Split works with autos, so this
25. I type-cast is required to tell the
26. /I compiler that the string $in is

27. /I shorter than 1024 bytes.

28. $string.split($in[string(char, $in_len)], " ", $n
29.

30. /I Convert the strings to integers.

31. $string.2int($nums(0));

ums);

32. $string.2int($nums(1));

34. $io.stdout=>writef(

35. "Sum is $sum\n”,

36. hash {

37. "sum", $nums(0) + $nums(1),
38. h

40. }

42: $exit_status = 0;
43. }
Figure 3. Some speed optimizationsto Figure 2.

3.4 Integer overflow

Integer overflow bugs are more insidious and amuah newer problem than buffer overrun bugs
that have not gained notice until around 2002. pagern of this bug is that the program will behav
unexpectedly when an integer's value overflows myrarithmetic. These overflows happen in two
common situations, either while adding two positivewo negative numbers (or subtracting equivayent
or while multiplying. When adding a positive numbe a negative number there is no problem, andwhe
dividing there is no problem. (Code that calcidapmwers for memory allocation is much more rare,
however that does not entirely exempt power catimra from concern. Multiplication is bad enougin f
our discussion.)

First, consider adding. Adding two positive nunseith an overflow produces a negative result.
An easy example is overflowing while incrementinghile iterating over the characters in a bufféthe
counter variable overflows, the code will acciddgtdollow a negative offset into the buffer. This
particular situation isn't terribly difficult to mmalle in a number of ways, but extending the exanple
multiplication shows a far more severe problem.

The resulting sign of a multiplication is not aiaéle indicator of overflow. Multiplying two
fairly small positive values may produce an ovewfleo large that the result wraps around more thmae,0
producing a positive result. For example, muliiply 65536 by 65537 using 32-bit integers results in
positive value much smaller than expected. Muttgilon is used in calculating the memory addrefss o
array elements. This is the root of the problerthafollowing example.

Just last year (in 2008), CUB% announced a patéH for an integer-overflow bug leading to
remote exploitation and local privilege escaldffon The problem was that the result of multiplyimgpt
integers and passing the result to calloc() coeddlt in an allocation smaller than expected. ulmsgquent
code, iterating over this allocation results in rovaning the allocation even though the counteraide
stays within reasonable boundaries. If callocgénd used an unbounded integer for its parantetes ts
no concern at all. This would allow calloc() tongly return an error indicating that it cannot aite the
requested amount of memory. The solution for @isode is an awkward check to be sure each input
variable is not greater than 32767. Additionalhgre is nothing to indicate to code maintaineeas fart of
the reason for this bound is the size of the tybad t. Note that this class of problems and sbistion
can be extended to most functions that write téecalllocated buffers, such as read(), fread()y@ec
fgets(), etc.

4 Future work

The first work to do next is to write a Pit compila Pit. This will both demonstrate that Pit can
be self-hosting and improve on the current compilghich has an overly simple design with no
optimizations. It was written for a single purppa#ich is to bootstrap the compiler written in.Pit

Then the compiler needs some optimization. Mosthef optimization techniques used by C
compilers should be useful in Pit. There are &mluktl Pit-specific optimizations. For example,rarptive
variable can often be substituted for an auto Wéeias described above. When work on optimizaton
complete, it is reasonable to expect Pit programas tise only primitive variables to match the spekd
equivalent C programs. Pit programs will alwaysféser than equivalent Perl programs because &hen
program written in Perl executes, Perl first compiit into byte-code, then executes it in a virmakhine.
Pit programs will execute significantly faster, Bvié they only use auto variables, because the ¢®de

already compiled at run-time and does not requivétaal machine. This places the performance iof P
programs, at worst, somewhere close to C program$etter than Perl programs.

Next, there needs to be some study of the differémspeed between primitive and auto variables,
specifically to determine how high the performapemalty is for using auto variables. This will piae/
insight into when it's appropriate to use primitiee auto variables when weighing the trade-off of a
program’s performance. Some rough study on thigdcbe done today on toy examples by emulating the
logic for auto variables in C. The examples wadbédlengthy, inconvenient, and somewhat inconclysive
but with care they could serve the purpose of gidmough estimate of the difference in speed batvtiee
types of variables.

A later useful branch of work may be to create mpiter that translates Pit code into a byte-code
that is suitable for a virtual machine. Like Jathds would allow programs to be portable betweetJCP
architectures. It is possible to do this in a wagt tallows many programs to be compiled nativelfooithe
virtual machine without modification, except progisthat use inline assembly code.

Another possible branch of work may be adaptingsteyg research on checking C code for
security bugs. While this is obviated for code tlatlusively uses auto variables, this research stithype
useful to minimize security risks in code that ugesiitive variables.

5 Conclusion

Defining a new low-level language with specificti@@s for memory management is a promising
approach to improving the quality of low-level swftre. So far, research in the area of buffer averand
integer overflows have focused on either detedfirege bugs or adding features to C that specifickdhl
with these problems. Thus far, these approachteitlier incomplete or make software much harder to
write. Pondering the larger point of view of usigagtomated memory management, which is a nonspecifi
tool that's useful in many ways for simplifying aoth general, reveals a new point of view for preivey
these problems.

Pit avoids infrastructure that usually deters paogmers from choosing other languages for low-
level code because of high overhead or unpredietadhavior, such as an interpreter, a virtual nmes;tor
a mark-and-sweep garbage collector. There is nfonpeance penalty to using Pit when the programmer
chooses to use only primitive variables. Whenpghmgrammer chooses to use auto variables, these is
cost (how much is yet to be seen). However becafifiee relation of Zipf's Law to execution time,eth
penalty of automated memory allocation will not ibgortant in most of the code. When efficiency is
necessary, Pit provides an exceptionally easy wagtérface auto variables with optimized code hps
the biggest advantage is Pit’s ability to desctibee-critical sections in efficient terms while peating the
rest of the code from buffer overruns, integer @oer bugs, non-control-data attacks, double-fregsyu
and other memory allocation bugs. These considesatmake Pit a superior language for low-level
programming.

6 References

[1] Dave Ahmad. The rising threat of vulnerabilitidue to integer errors. IEEE Security and Privacy,
01(4):77-82, 2003.

[2] Aleph One. Smashing the stack for fun and préfhrack
http://www.phrack.org/issues.html?issue=49&id=1419J:14, 1996.

[3] J. P. Anderson. Computer security technolognpling study. Air Force Electronic Systems Division
ESD-TR-73-51, Vols. | and 1l, 1972.

[4] Sandeep Bhatkar, Daniel C. DuVarney, and Ragekddress obfuscation: An efficient approach to
combat a broad range of memory error exploits.2th USENIX Security Symposium, August
2003.

[5] Blexim. Basic integer overflows. Phrack httpw.phrack.org/issues.html?issue=60&id=10,
11(60):10, 2002.

[6] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gguaial Ravishankar K. lyer. Non-control-data atsack
are realistic threats. In 14th USENIX Security Sysipm, pages 177-192, 2005.

[7] Crispan Cowan, Calton Pu, Dave Maier, Jonatatpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton. Stack& Automatic adaptive detection and

prevention of buffer-overflow attacks. In 7th USBN$ecurity Conference, pages 63-78, January
1998.

[8] Crispin Cowan, Steve Beattie, John Johanseh Parry Wagle. PointGuardTM: Protecting pointers
from buffer overflow vulnerabilities. In 12th USEXIISecurity Symposium, August 2003.

[9] Crispin Cowan, Perry Wagle, Calton Pu, StevatBe, and Jonathan Walpole. Buffer overflows:
Attacks and defenses for the vulnerability of tleeatle. In DARPA Information Survivability
Conference & Exposition — Volume 2, pages 119-I28uary 2000.

[10] T. Eisenberg, D. Gries, J. Hartmanis, D. Haitp M. S. Lynn, and T. Santoro. The Cornell
commission: on Morris and the worm. Communicatiohthe ACM, 32(6):706—709, 1989.

[11] FreeBSD. FreeBSD ports collection. http://wireebsd.org/ports/.

[12] Peng Li. Safe systems programming languagesli@r 2004.

[13] OpenBSD. OpenBSD security. http://openbsdsagirity.html.

[14] Hilmi Ozdoganoglu, T. N. Vijaykumar, Carla Brodley, Benjamin A. Kuperman, and Ankit Jalote.
Smashguard: A hardware solution to prevent secatificks on the function return address. IEEE
Transactions on Computers, 55(10):1271-1285, 2006.

[15] Leif Pedersen. Pit programming language. hiji:devpit.org/.

[16] Leif Pedersen and Hassan Reza. A formal sigatibn of a programming language: Design of Rit. |
ISOLA '06: Proceedings of the Second Internatiddyghposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISOL2806), pages 111-118, Washington, DC,
USA, 2006. IEEE Computer Society.

[17] Jun Xu, Zbigniew Kalbarczyk, and Ravishankardyer. Transparent runtime randomization for
security. srds, 00:260, 2003.

[18] Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, &=lishankar K. lyer. Architecture support for
defending against buffer overflow attacks. In Wdwdqs on Evaluating and Architecting System
Dependability (EASY), October 2002.

[19] Michael zZhivich, Tim Leek, and Richard LippnrarDynamic buffer overflow detection. In Workshop
on the Evaluation of Software Defect Detection Ea005, 2005.

[20] Common UNIX Printing System. Project home pauép://cups.org/

[21] Common UNIX Printing System. STR #2919: Muléivendor CUPS texttops integer overflow
vulnerability. http://www.cups.org/str.php?L291%dnttp://cups.org/strfiles/2919/str2919.patch

[22] iDefense Labs. Public advisory: 10.09.08.
http://labs.idefense.com/intelligence/vulnerat@ktidisplay.php?id=752

[23] Trevor Jim and J. Greg Morrisett and Dan Gnoes and Michael W. Hicks and James Cheney and
Yanling Wang. Cyclone: A Safe Dialect of C. In ATHI2: Proceedings of the General Track of
the annual conference on USENIX Annual Technicaif€mnce, pages 275-288, Berkeley, CA,
USA, 2002, USENIX Association.

[24] George C. Necula and Scott McPeak and WeWtleymer. CCured: type-safe retrofitting of legacy
code. In POPL '02: Proceedings of the 29th ACM SIGR-SIGACT symposium on principles
of programming languages, pages 128-139, Portlaregon, 2002, ACM.

[25] Nicholas Nethercote and Julian Seward. Valdjrih program supervision framework. In Proceedings
of RV'03, Boulder, Colorado, USA, July 2003.

[26] Robert DeLine and Manuel Fahndrich. Enfordmgh-level protocols in low-level software.
SIGPLAN Notices, 36(5): 59-69, 2001.

[27] Olatunji Ruwase and Monica S. Lam. A practidghamic buffer overflow detector. In In Proceeding
of the 11th Annual Network and Distributed Systeec\8ity Symposium, pages 159-169, 2004.
http://citeseer.ist.psu.edu/ruwaseO4practical.html

[28] Todd M. Austin and Scott E. Breach and Gurin8aSohi. Efficient detection of all pointer andasy
access errors. SIGPLAN Notices, 29(6): 290-3014199

[29] H. Etoh and K. Yoda. ProPolice: Improved stackashing attack detect on. IPSJ SIGNotes Computer
SECurity 014(025), Oct.2001. http://www.trl.ibm.chprojects/security/ssp

[30] TinyCC. http://tinycc.org/

[31] Manuel Fahndrich and Robert DeLine. Adoptionl docus: practical linear types for imperative
programming. SIGPLAN Notices, 37(5): 13-24, 2002.

